Integrals Involving Quadratic Polynomials in the denominator

In general a polynomial, $\mathbf{P}(\mathbf{x})$, of degree n has the form:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

In a Nut Shell: A quadratic polynomial has the form $\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}$.
One strategy to evaluate integrals involving quadratic polynomials is to complete the square followed by one or more appropriate trigonometric substitutions as
illustrated by the example shown below.

Example: $I=\int d x /\left(x^{2}+2 x+5\right)$
Strategy: First complete the square with $(x+1)^{2}+4=(x+1)^{2}+2^{2}$
$\mathrm{I}=\int \mathrm{dx} /\left[(\mathrm{x}+1)^{2}+2^{2}\right] \quad$ Now let $\mathrm{u}=\mathrm{x}+1, \mathrm{du}=\mathrm{dx}$
$I=\quad \int d u /\left(u^{2}+2^{2}\right)$ which suggests the following trig substitution
(Refer to the section on the application of trig substitutions.)
Let $u=2 \tan \theta, d u=2 \sec ^{2} \theta d \theta, u^{2}+2^{2}=2^{2} \sec ^{2} \theta$
$I=\int 2 \sec ^{2} \theta d \theta / 2^{2} \sec ^{2} \theta=\int(1 / 2) d \theta=(1 / 2) \theta+C$
Now $\theta=\tan ^{-1}(u / 2)=\tan ^{-1}[(x+1) / 2]$
Recall $u=x+1$
So the integral becomes:

$$
\left.\mathrm{I}=(1 / 2) \tan ^{-1}[(\mathrm{x}+1) / 2]+\mathrm{C} \quad \text { (result }\right)
$$

Note: As a check, differentiation of the result for your integral should return the original integrand if the integration was correct. Here's the check for the above example.
$\mathrm{dI} / \mathrm{dx}=(1 / 2)\left[1 /\left\{\left(1+(\mathrm{x}+1)^{2} / 2^{2}\right\}(1 / 2)\right]=1 /\left[\mathrm{x}^{2}+2 \mathrm{x}+1+4\right]\right.$
$d \mathrm{I} / \mathrm{dx}=1 /\left(\mathrm{x}^{2}+2 \mathrm{x}+5\right) \quad$ check!

In a Nut Shell: For more complicated cases involving quadratic polynomials it may be necessary to split the integral into several integrals. The examples below illustrate this strategy.

Example: $\quad \mathbf{I}=\int(2 x+3) d x /\left(9 x^{2}+6 x+5\right)$ rewrite integral as follows:
Complete the square in the denominator.

$$
\left.I=\int\left[(2 x+3) /(3 x+1)^{2}+2^{2}\right)\right] d x
$$

Let $\mathrm{w}=3 \mathrm{x}+1, \quad \mathrm{x}=(1 / 3)(\mathrm{w}-1)$ and $2 \mathrm{x}=(2 / 3)(\mathrm{w}-1)$

$$
\begin{aligned}
& d w=3 d x, \quad d x=(1 / 3) d w \text { so } 3 x=w-1 \quad 2 x=(2 / 3)(w-1) \\
& \text { so } I=\int[(2 / 3)(w-1)+3] /\left(w^{2}+2^{2}\right)(1 / 3) d w \quad \text { and } \\
& I=\int[(2 / 9)(w-1)+1] /\left(w^{2}+2^{2}\right) d w=\int(2 / 9) w /\left(w^{2}+2^{2}\right) d w+(7 / 9) \int d w /\left(w^{2}+2^{2}\right)
\end{aligned}
$$

Now split into two integrals $\mathbf{I}=\mathbf{I}_{\mathbf{1}}+\mathbf{I}_{\mathbf{2}}$ where
$\mathrm{I}_{1}=\int\left[(2 / 9) \mathrm{w} /\left(\mathrm{w}^{2}+2^{2}\right)\right] d \mathrm{w}$ and $\mathrm{I}_{2}=(7 / 9) \int \mathrm{dw} /\left(\mathrm{w}^{2}+2^{2}\right)$

For the first integral let $v=w^{2}+2^{2}$ then $d v=2 w d w$ and $w d w=(1 / 2) d v$
The integral becomes $\quad I_{1}=(2 / 9) \int(1 / 2) \mathrm{dv} / \mathrm{v}$ which is a standard integral

$$
\begin{aligned}
& \mathrm{I}_{1}=(1 / 9) \ln \mathrm{v}+\mathrm{C} \quad \text { Recall } \mathrm{w}=3 \mathrm{x}+1 \\
& \mathrm{I}_{1}=(1 / 9) \ln \left(\mathrm{w}^{2}+2^{2}\right)+\mathrm{C}=(1 / 9) \ln \left(9 \mathrm{x}^{2}+6 \mathrm{x}+1+4\right)+\mathrm{C} \\
& \mathrm{I}_{1}=(1 / 9) \ln \left(\mathrm{w}^{2}+2^{2}\right)+\mathrm{C}=(1 / 9) \ln \left(9 \mathrm{x}^{2}+6 \mathrm{x}+5\right)+\mathrm{C}
\end{aligned}
$$

For the second integral $\quad \mathrm{I}_{2}=(7 / 9) \int \mathrm{dw} /\left(\mathrm{w}^{2}+2^{2}\right)$
Let $w=2 \tan \theta$ and $d w=2 \sec ^{2} \theta d \theta$

$$
\begin{aligned}
& \mathrm{w}^{2}+2^{2}=4\left(1+\tan ^{2} \theta\right)=4 \sec ^{2} \theta \\
& \mathrm{I}_{2}=(7 / 9) \int 2 \sec ^{2} \theta \mathrm{~d} \theta / 4 \sec ^{2} \theta=(7 / 18) \int \mathrm{d} \theta=(7 / 18) \theta+C
\end{aligned}
$$

But $\mathrm{w}=2 \tan \theta$ so $\theta=\tan ^{-1}(\mathrm{w} / 2)=\tan ^{-1}[(3 \mathrm{x}+1) / 2]$
And $\quad \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$\mathrm{I}=1 / 9 \ln \left|9 \mathrm{x}^{2}+6 \mathrm{x}+5\right|+(7 / 18) \tan ^{-1}[(3 \mathrm{x}+1) / 2]+\mathrm{C} \quad$ (result)

An alternate strategy to evaluate integrals involving quadratic polynomials in the denominator of the integral is to recognize at the outset that the given integral has the form of

$$
I=\int d u / u
$$

In the above example $u=9 x^{2}+6 x+5$ and $d u=(18 x+6) d x$

Alternate Solution: \quad Courtesy of Prof. James W. Phillips

Example: $\quad I=\int(2 x+3) d x /\left(9 x^{2}+6 x+5\right)$ rewrite integral as follows:
Use the substitution $\quad u=9 x^{2}+6 x+5$ and $d u=(18 x+6) d x$
But the term in the numerator is $2 \mathrm{x}+3$ not $18 \mathrm{x}+6$
So introduce constants A and B such that $2 x+3=A(18 x+6)+B \quad$ and solve for A and B.

$$
2 \mathrm{x}+3=\mathrm{A}(18 \mathrm{x})+6 \mathrm{~A}+\mathrm{B} \quad \text { Equate like terms on each side of the equal sign. }
$$

$$
A=1 / 9 \quad B=7 / 3 \quad \text { So } 2 x+3=(1 / 9)(18 x+6)+(7 / 3)
$$

and $\quad I=\int[(1 / 9)(18 x+6)+(7 / 3)] /\left(9 x^{2}+6 x+5\right) d x$
Now split into two integrals $\mathbf{I}=\mathbf{I}_{\mathbf{1}}+\mathbf{I}_{\mathbf{2}}$ where
$\mathrm{I}_{1}=\int(1 / 9)\left[(18 \mathrm{x}+6) /\left(9 \mathrm{x}^{2}+6 \mathrm{x}+5\right] \mathrm{dx} \quad\right.$ and $\quad \mathrm{I}_{2}=(7 / 3) \int \mathrm{dx} /\left(9 \mathrm{x}^{2}+6 \mathrm{x}+5\right)$

For the first integral I_{1} is of the form: $\int d v / v$ where $v=9 x^{2}+6 x+5$
The integral becomes $I_{1}=(1 / 9) \int \mathrm{dv} / \mathrm{v}$ which is a standard integral

$$
I_{1}=(1 / 9) \ln \left|9 x^{2}+6 x+5\right|+C
$$

For the second integral, complete the square in the denominator

$$
I_{2}=(7 / 3) \int d x /\left[(3 x+1)^{2}+2^{2}\right]
$$

Let $w=3 x+1$ so $d w=3 d x$ and $d x=(1 / 3) d w$

$$
\mathrm{I}_{2}=(7 / 9) \int \mathrm{dw} /\left(\mathrm{w}^{2}+2^{2}\right)
$$

Use the trig substitution $\quad \mathrm{w}=2 \tan \theta$ and $\mathrm{dw}=2 \sec ^{2} \theta \mathrm{~d} \theta$

$$
\begin{aligned}
& \mathrm{w}^{2}+2^{2}=4\left(1+\tan ^{2} \theta\right)=4 \sec ^{2} \theta \\
& \mathrm{I}_{2}=(7 / 9) \int 2 \sec ^{2} \theta \mathrm{~d} \theta / 4 \sec ^{2} \theta=(7 / 18) \int \mathrm{d} \theta=(7 / 18) \theta+C
\end{aligned}
$$

But $\mathrm{w}=2 \tan \theta$ so $\theta=\tan ^{-1}(\mathrm{w} / 2)=\tan ^{-1}[(3 \mathrm{x}+1) / 2]$
And $\quad \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$\mathrm{I}=1 / 9 \ln \left|9 \mathrm{x}^{2}+6 \mathrm{x}+5\right|+(7 / 18) \tan ^{-1}[(3 \mathrm{x}+1) / 2]+\mathrm{C} \quad$ (result)
Note: Both methods yield the same result for the integral.

