Sturm-Liouville Applications

In a Nut Shell: The Sturm-Liouville Problem involves solving a differential equation having special properties along with associated boundary conditions defined in the table below.

The Sturm-Liouville D.E. and associated boundary conditions:

 $d/dx [p(x) dy/dx] - q(x) y + \lambda r(x) y = 0$ where a < x < b

 $A_1 y(a) - A_2 y'(a) = 0$ and $B_1 y(b) + B_2 y'(b) = 0$

where neither A_1 and A_2 nor B_1 and B_2 are both zero.

The objective is to find the eigenvalues, λ , that yield solutions to the differential equation satisfying the prescribed boundary conditions.

Sturm-Liouville Problems have several useful properties that apply to their solution. The table below lists these properties.

Property 1: If p(x), dp/dx, q(x), and r(x) are continuous in [a,b] and if p(x) > 0 ad r(x) > 0, then the eigenvalues are nonnegative.

Property 2: Eigenfunctions of the Sturm-Liouville problem are orthogonal on the interval with respect to the weight function r(x).

[a,b]. i.e. if $y_n(x)$ and $y_m(x)$ are eigenfunctions, then

$$\int_{a}^{b} y_n(x) y_m(x) r(x) dx = 0 \quad \text{for} \quad m \neq n$$

Property 3: A function f(x) can be represented in the interval [a,b] by an eigenfunction series. i.e.

$$f(x) = \sum_{n=1}^{\infty} c_n y_n(x)$$

Example: Find the eigenvalues and eigenfunctions for the following problem:

$$y'' + \lambda y = 0$$
 here $p(x) = 1$, $q(x) = 0$, and $r(x) = 1$

$$hy(0) - y'(0) = 0$$
, $h > 0$ and $y(L) = 0$

Note: Since both p(x) and r(x) > 0 there are no negative eigenvalues. So the only Possible eigenvalues are $\lambda = 0$ and $\lambda > 0$. The table below contains these two cases.

Case 1: $\lambda = 0$ y(x) = Ax + B, y' = Ahy(0) - y'(0) = 0 = hB - A = 0, A = hBy(L) = 0 = AL + B = hB + B = 0 = (h+1)B = 0Since h > 0, B = 0 and A = hB = 0So there are no eigenvalues nor eigenfunctions for $\lambda = 0$. Case 2: $\lambda > 0$, $\lambda = \alpha^2$ y'' + $\alpha^2 y = 0$ $y = A \cos \alpha x + B \sin \alpha x$ and $y' = -A\alpha \sin \alpha x + B\alpha \cos \alpha x$ $hy(0) - y'(0) = 0 = hA - B\alpha$, $B = hA/\alpha$ So $y = A \cos \alpha x + (hA/\alpha) \sin \alpha x = A [\cos \alpha x + (h/\alpha) \sin \alpha x]$ ------ (1) and $y(L) = 0 = A [\cos \alpha L + (h/\alpha) \sin \alpha L]$ for a nontrivial solution $A \neq 0$ Let $\beta_n = \alpha_n L$ so $\alpha_n = \beta_n/L$ ------ (2) $\cos \beta_n + (hL/\beta_n) \sin \beta_n] = 0$ So $\tan \beta_n = -\beta_n /hL$ (transcendental equation for roots) where the **eigenvalues are** $\lambda_n = \alpha_n^2 = (\beta_n/L)^2$ and from (1) with (2) the **eigenfunctions are** $y_n(x) = \beta_n \cos \beta_n x/L + hL \sin \beta_n x/L$ where β_n is the nth positive root of tan x = -x/hL (hint: use a plot)