Sturm-Liouville Applications

In a Nut Shell: The Sturm-Liouville Problem involves solving a differential equation having special properties along with associated boundary conditions defined in the table below.

The Sturm-Liouville D.E. and associated boundary conditions:

$$
d / d x[p(x) d y / d x]-q(x) y+\lambda r(x) y=0 \quad \text { where } a<x<b
$$

$A_{1} y(a)-A_{2} y^{\prime}(a)=0 \quad$ and
$B_{1} y(b)+B_{2} y^{\prime}(b)=0$
where neither A_{1} and A_{2} nor B_{1} and B_{2} are both zero.
The objective is to find the eigenvalues, λ, that yield solutions to the differential equation satisfying the prescribed boundary conditions.

Sturm-Liouville Problems have several useful properties that apply to their solution. The table below lists these properties.

Property 1: If $p(x), d p / d x, q(x)$, and $r(x)$ are continuous in $[a, b]$ and if $p(x)>0$ ad $\mathrm{r}(\mathrm{x})>0$, then the eigenvalues are nonnegative.

Property 2: Eigenfunctions of the Sturm-Liouville problem are orthogonal on the interval with respect to the weight function $r(x)$.
[a,b] . i.e. if $y_{n}(x)$ and $y_{m}(x)$ are eigenfunctions, then

$$
\int_{a}^{b} y_{n}(x) y_{m}(x) r(x) d x \quad=0 \quad \text { for } \quad m \neq n
$$

Property 3: A function $f(x)$ can be represented in the interval [a,b] by an eigenfunction series. i.e.

$$
\mathrm{f}(\mathrm{x})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{c}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}(\mathrm{x})
$$

Example: Find the eigenvalues and eigenfunctions for the following problem:

$$
\begin{aligned}
& y^{\prime \prime}+\lambda y=0 \quad \text { here } p(x)=1, q(x)=0, \text { and } r(x)=1 \\
& \operatorname{hy}(0)-y^{\prime}(0)=0, h>0 \quad \text { and } \quad y(L)=0
\end{aligned}
$$

Note: Since both $\mathrm{p}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})>0$ there are no negative eigenvalues. So the only Possible eigenvalues are $\lambda=0$ and $\lambda>0$. The table below contains these two cases.

Case 1: $\quad \lambda=0 \quad y(x)=A x+B, \quad y^{\prime}=A$

$$
\begin{aligned}
& h y(0)-y^{\prime}(0)=0=h B-A=0, A=h B \\
& y(L)=0=A L+B=h B+B=0=(h+1) B=0
\end{aligned}
$$

Since $h>0, B=0$ and $A=h B=0$
So there are no eigenvalues nor eigenfunctions for $\lambda=0$.

Case 2: $\lambda>0, \quad \lambda=\alpha^{2} \quad y^{\prime \prime}+\alpha^{2} y=0$

$$
\begin{gather*}
y=A \cos \alpha x+B \sin \alpha x \quad \text { and } \quad y^{\prime}=-A \alpha \sin \alpha x+B \alpha \cos \alpha x \\
h y(0)-y^{\prime}(0)=0=h A-B \alpha, \quad B=h A / \alpha \tag{1}
\end{gather*}
$$

So $\mathrm{y}=\mathrm{A} \cos \alpha \mathrm{x}+(\mathrm{hA} / \alpha) \sin \alpha \mathrm{x}=\mathrm{A}[\cos \alpha \mathrm{x}+(\mathrm{h} / \alpha) \sin \alpha \mathrm{x}]$
and $y(L)=0=A[\cos \alpha L+(h / \alpha) \sin \alpha L]$ for a nontrivial solution $A \neq 0$

$$
\begin{equation*}
\text { Let } \beta_{n}=\alpha_{n} L \text { so } \alpha_{n}=\beta_{n} / L \tag{2}
\end{equation*}
$$

So

$$
\begin{aligned}
& \left.\cos \beta_{\mathrm{n}}+\left(\mathrm{hL} / \beta_{\mathrm{n}}\right) \sin \beta_{\mathrm{n}}\right]=0 \\
& \quad \tan \beta_{\mathrm{n}}=-\beta_{\mathrm{n}} / \mathrm{hL} \quad \text { (transcendental equation for roots) }
\end{aligned}
$$

where the eigenvalues are $\quad \lambda_{n}=\alpha_{n}{ }^{2}=\left(\beta_{n} / L\right)^{2}$
and from (1) with (2) the eigenfunctions are $y_{n}(x)=\beta_{n} \cos \beta_{n} x / L+h L \sin \beta_{n} x / L$
where β_{n} is the nth positive root of $\tan \mathrm{x}=-\mathrm{x} / \mathrm{hL}$ (hint: use a plot)

