Integrals using Trig Substitutions

In a Nut Shell: Integrals, $\int f(x) d x$, where the integrand, $f(x)$, has one of the following forms (note: the exponent can be to any power, p)

Case a: $f(x)=\left(a^{2}-x^{2}\right)^{p} \quad$ where a is a constant
Case $b: f(x)=\left(a^{2}+x^{2}\right)^{p} \quad$ where a is a constant
Case c: $f(x)=\left(x^{2}-a^{2}\right)^{p} \quad$ where a is a constant
have convenient trig substitutions that lead to the evaluation of the integral.

For integrals involving $f(x)=\left(a^{2}-x^{2}\right)^{p}$ the trig substitution $x=a \sin \theta$ is helpful. In this case $d x=a \cos \theta$ and $\left(a^{2}-x^{2}\right)=a^{2} \cos ^{2} \theta$.

For integrals involving $\mathrm{f}(\mathrm{x})=\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{\mathrm{p}}$ the trig substitution $\mathrm{x}=\mathrm{a} \tan \theta$
is helpful. In this case $d x=a \sec ^{2} \theta d \theta$ and $\left(a^{2}+x^{2}\right)=a^{2} \sec ^{2} \theta$.

For integrals involving $f(x)=\left(x^{2}-a^{2}\right)^{p}$ the trig substitution $x=a \sec \theta$ is helpful. In this case $d x=a \sec \theta \tan \theta d \theta$ and $\left(x^{2}+a^{2}\right)=a^{2} \tan ^{2} \theta$.

The procedure is to make the substitution, then evaluate the integral in terms of the new variable, θ, and finally convert back into the original variable, x . This conversion is best completed using the following diagrams.

For case a (above) $\mathrm{x}=\mathrm{a} \sin \theta$

For case b (above) $\mathrm{x}=\mathrm{a} \tan \theta$

For case c (above) $\mathrm{x}=\mathrm{a} \sec \theta$

Example involving $\left(\mathbf{x}^{2}-\mathbf{a}^{2}\right)^{p}$

Evaluate the integral $I=\int d x /\left[(a x)^{2}-b^{2}\right]^{3 / 2} \quad($ here $p=3 / 2)$

First let $u=a x$, then $d u=a d x$ and $d x=(1 / a) d u \quad(u$ is an intermediate variable)
The integral becomes $I=(1 / a) \int d u /\left[u^{2}-b^{2}\right]^{3 / 2}$

In this case use the "trig substitution" $u=\sec \theta, \quad$ so $d u=\sec \theta \tan \theta d \theta$
and $\left[u^{2}-b^{2}\right]=b^{2} \sec ^{2} \theta-b^{2}=b^{2} \tan ^{2} \theta \quad$ so
$I=(1 / a) \int\left[(b \sec \theta \tan \theta d \theta) /\left(b^{3} \tan ^{3} \theta\right)\right] d \theta=\left[\left(1 / a b^{2}\right) \int \sec \theta / \tan ^{2} \theta\right] d \theta$
or $\left.\left.I=\left(1 / a b^{2}\right) \int \cos ^{2} \theta / \sin ^{2} \theta \cos \theta\right] d \theta=\left(1 / a b^{2}\right) \int \cos \theta / \sin ^{2} \theta\right] d \theta$

Now let $w=\sin \theta d w=\cos \theta$ and the integral becomes
$I=\left(1 / a b^{2}\right) \int d w / w^{2}=\left(1 / a b^{2}\right)(-1 / w)+C=\left(-1 / a b^{2}\right)(1 / \sin \theta)+C$
or $\quad I=\left(-1 / a b^{2}\right) \csc \theta+C$

Now express the result in terms of the original variable x .
Start with the triangle involving the intermediate variable, u. Recall $u=\sec \theta$.
The relevant triangle is:

Therefore $\sec \theta=u / b$ and $\csc \theta=u / \sqrt{ }\left(u^{2}-b^{2}\right)$ and also recall $u=a x$
So

$$
\begin{aligned}
& I=\left(-1 / a b^{2}\right) a x / \sqrt{ }\left[(a x)^{2}-b^{2}\right]+C \text { or finally } \\
& I=\left(-1 / b^{2}\right)\left\{x / \sqrt{ }\left[(a x)^{2}-b^{2}\right]\right\}+C \text { (result) }
\end{aligned}
$$

Example involving $\left(\mathbf{x}^{2}+\mathbf{a}^{2}\right)^{p}$

Evaluate the integral $I=\int x^{5} d x / \sqrt{ }\left(x^{2}+2\right) \quad($ here $p=1 / 2)$

First let $x=\sqrt{ } 2 \tan \theta$, then $d x=\sqrt{ } 2 \sec ^{2} \theta d \theta$ and $x^{2}+2=2 \tan ^{2} \theta+2$
or $x^{2}+2=2 \sec ^{2} \theta$
The integral becomes $I=\int\left[2^{5 / 2} \tan ^{5} \theta \sqrt{ } 2 \sec ^{2} \theta\right] /[\sqrt{ } 2 \sec \theta] d \theta$
or the integral becomes $\quad I=2^{5 / 2} \int \tan ^{5} \theta \sec \theta d \theta$

Next write the integral as $2^{5 / 2} \int \tan ^{4} \theta \sec \theta \tan \theta d \theta$
And use $\tan ^{2} \theta=\sec ^{2} \theta-1 \quad$ Then the integral becomes
$I=2^{5 / 2} \int\left(\sec ^{2} \theta-1\right)^{2} \sec \theta \tan \theta d \theta$
Next introduce the variable $u=\sec \theta$ so that $d u=\sec \theta \tan \theta d \theta$
The integral becomes $I=2^{5 / 2} \int\left(u^{2}-1\right)^{2} d u=2^{5 / 2} \int\left(u^{4}-2 u^{2}+1\right) d u$
$\mathrm{I}=2^{5 / 2}\left[\mathrm{u}^{5} / 5-2 \mathrm{u}^{3} / 3+\mathrm{u}\right]+\mathrm{C} \quad$ where $\mathrm{u}=\sec \theta$
or $I=2^{5 / 2}\left[(1 / 5) \sec ^{5} \theta-(2 / 3) \sec ^{3} \theta+\sec \theta+C\right.$

Now express the result in terms of the original variable x. Recall $x=\sqrt{ } 2 \tan \theta$.
The relevant triangle is:
Note: $\sec \theta=\sqrt{ }\left[\left(x^{2}+2\right) / \sqrt{ } 2\right]$

or $\quad \mathrm{I}=2^{5 / 2}\left[(1 / 5)\left[\left(\mathrm{x}^{2}+2\right) / 2\right]^{5 / 2}-(2 / 3)\left[\left(\mathrm{x}^{2}+2\right) / 2\right]^{3 / 2}+\left[\left(\mathrm{x}^{2}+2\right) / 2\right]^{1 / 2}+\mathrm{C}\right.$

