
 Approximate Methods for First Order Differential Equations  
 

In a Nut Shell:  Not all first order differential equations (linear or nonlinear) 

 

                                                dy/dx  =  f(x,y)   

 

can be solved exactly and explicitly.  For example you may not be able to integrate  f(x,y)  

to obtain y(x).  In such cases there are three approximate methods that you can use.  They 

include Picard’s Method, Euler’s Method, and the Runge-Kutta Method. 

                    

 

Problem Statement:    Find an approximate solution to the first order, ordinary d.e. 

 

                    dy/dx   =  f [ (x,y(x) ]     subject to the condition        y(a)  =  b 

 

 

Note: 

            •   Approximate methods apply to first order differential equations that 

                may be linear or nonlinear. 

      

            •   Each numerical method may contain local and cumulative errors. 

 

            •   You need to decide on an appropriate step size for each method. 

                 Larger step sizes get you to the numerical solution quicker but may 

                 not  be as accurate. 

 

                 Smaller step sizes will take longer but each iteration carries with it 

                 a local error which may accumulate. 

 

 

Method 1:     Picard’s Method 

 

Problem Statement:    Find an approximate solution to the first order, ordinary d.e. 

 

                    dy/dx   =  f [ (x,y(x) ]     subject to the condition        y(a)  =  b 

 

 

Strategy:    Use successive approximations (another name for Picard's Method) 

                                                                                                c             c 

First Integrate    dy   =    f[x,y(x)] dx   from a to c    or         ∫ dy   =    ∫ f [x,y(x)] dx      

                                                                                               a              a 

where a is the initial value of x and c is an arbitrary value. 

 

 

                                                c 

Then               y(c)  ˗  y(a)  =  ∫ f [x,y(x)] dx         but  y(a)  =  b      so 

                                                a 

 

 

 

                                                c 

                       y(c)  ˗  b  =       ∫ f [x,y(x)] dx        here  x  is a dummy variable 

                                                a                          (switch variable of integration to  t) 

 

 



 

 

                                                       x 

for arbitrary x,      y(x)    =    b  +  ∫ f [ t,y(t) ] dt     

                                                      a 

 

 

                                                                                     x 

Successive steps are given by:     yn+1(x)    =    b  +    ∫ f [ t,yn(t) ] dt    start with yo = b 

                                                                                    a 

 

 

 

Example:  Use Picard's Method to find the first, second, and third approximations to 

 

            dy/dx  =  1  +  y2,    y(0)  =  3     i.e.  y1(x),  y2(x), and y3(x) 

 

and evaluate estimate at  x = 0.1.  Further compare with the exact solution. 

 

 

 

Strategy:    Use successive approximations by applying the following: 

 

                                                         x 

                          yn+1(x)    =    b  +    ∫ f [ t,yn(t) ] dt     

                                                         a 

 

where  b = 3 and  a = 0    and start with yo = b  =  3 

 

 

                               x                                         x  

So  y1(x)  =  3  +    ∫ [ 1 + yo(t)2 ] dt  =  3  +     ∫  [ 1  +  32 ] dt  =    3  +  10 x 

0 0 

 

                                         x                                      x 

 Now    y2(x)    =    b  +    ∫ f [ t,y1(t) ] dt    =   3  +  ∫ [ 1  +  (3 + 10 t )2  dt 

                                        a                                      0 

 

So   y2(x)    =    3  +  10 x  +  30 x2  +  (100/3)  x3   

 

                                         x                                      

 Now    y3(x)    =    b  +    ∫ f [ t,y2(t) ] dt    =    

                                         a 

 

                                 x     

                    =   3  +  ∫ [ 1  +  (  3  +  10 t  +  30 t2  +  (100/3)  t3  )2  dt 

                                0 

 

After integration: 

 

y3(x)  =  3  +  10 x  +  30 x2  +    (280/3) x3  +  200 x4  +   

 

                     (4700/15) x5  + (2000/6) x6 +(10,000/63) x7     

 

 



 

 

 

                    y(x)  =  tan [ x  +  tan-1(3) ] 

   

 

     y(0.1)  =   4.43541 

 

                          y1(x)  =   3  +  10 x 

 

 

     y1(0.1)  =  4.00000 

 

    y2(x)    =    3  +  10 x  +  30 x2  +  (100/3)  x3   

 

 

     y2(0.1)  =  4.33333 

 

y3(x)  =  3  +  10 x  +  30 x2  +    (280/3) x3  +  200 x4     

 

           +  (4700/15) x5  + (2000/6) x6 +(10,000/63) x7     

 

 

 

 

     y3(0.1)  =  4.41648 

 

 

 

Now compare with  

 

the exact solution for the initial value problem 

 

            dy/dx  =  1  +  y2,    y(0)  =  3     Note:  The d.e. is nonlinear. 

 

 

Strategy:  Use separation of Variables: 

 

 

  Separate variables:                  dy / (1  +  y2 )  =  dx 

 

  

  Integrate:   ∫  dy / (1  +  y2 )  =   ∫  dx   which gives:  tan˗1 (y)  =  x  +  C 

 

Or     y  =  tan (x + C)   Use the initial condition  y(0) = 3  to obtain   C  =  tan-1(3) 

 

 

The result is:                y(x)  =  tan [ x  +  tan-1(3) ] 

 

 

 

Method 2:  Euler’s Method 

 

In a Nut Shell:  Euler's Method provides a simple approach to obtain a numerical solution 

of linear or nonlinear first order differential equations.  However, care must be exercised 

since convergence is not guaranteed.  Numerical errors may accumulate leading to 

erroneous results. 

 

 

Problem Statement:    Find an approximate solution to the first order, ordinary d.e. 

 

 

                    dy/dx   =  f [ (x,y(x) ]     subject to the condition        y(0)  =  yo 

 



 

Strategy:    Use Euler's Algorithm to obtain successive approximations 

 

                          yn+1  =  yn  +  h f(xn, yn)        ( n ≥ 0 ) 

 

where  h  =  step size 

 

Of course smaller step sizes require more steps to arrive at a result whereas larger step 

 

sizes may yield less accurate results. 

 

 

Local and Cumulative Errors related to Euler's Method. 

 

The linear approximation to the solution curve is as follows: 

 

       y(xn+1)  ≈  yn  +  h f(xn, yn)  =  yn+1           The figure below shows the local error. 

 

                                           
 

 

 

  Trade-off:  The local error can accumulate.  So selection of the step size, h, is an 

                      Important consideration. 

                                   

 

Example:  Use Euler's Method twice to find the approximate solution to 

 

               dy/dx  =  y  +  1       where  y(0)  =  1       in the interval [0, 0.5] 

 

First use the step size, h, = 0.25 and then use 0.1.  Compare your results with the 

 

Exact solution  y(x)  =  2 ex  ˗ 1  for  x = 0.5. 

 

 

Strategy:    Apply Euler's Algorithm to obtain successive approximations 

 

                          yn+1  =  yn  +  h f(xn, yn)       

 

 

Case 1:   h = 0.25    f(x, y(x))  =  y + 1,  y0  =  y(0)  =  1 

 

  y1  =  y0  +  h f(x0, y0)  =   1  +  0.25 [ 1 + 1 ]  =  1.5              (result when x = 0.25) 

 

  y2  =  y1  +  h f(x1, y1)  =   1.5  +  0.25 [ 1.5 + 1 ]  =  2.125    (result when x = 0.5) 

 



 

Case 2:   h = 0.1    f(x, y(x))  =  y + 1,  y0  =  y(0)  =  1 

 

  y1  =  y0  +  h f(x0, y0)  =   1  +  0.1 [ 1 + 1 ]  =  1.2 

 

  y2  =  y1  +  h f(x1, y1)  =   1.2  +  0.1 [ 1.2 + 1 ]  =  1.42                   (result when x = 0.2) 

 

  y3  =  y2  +  h f(x2, y2)  =   1.42  +  0.1 [ 1.42 + 1 ]  =  1.662             (result when x = 0.3) 

 

  y4  =  y3  +  h f(x3, y3)  =   1.662  +  0.1 [ 1.662 + 1 ]  =  1.9282       (result when x = 0.4) 

 

  y5  =  y4  +  h f(x4, y4)  =   1.9282  +  0.1 [ 1.9282 + 1 ]  =  2.221     (result when x = 0.5) 

 

 

Case 3:   Exact Solution 

 

       y(x)  =  2 ex  ˗ 1  for  x = 0.5 :    y(0.5)  =  2 e0.5  ˗ 1  =  2.297   (result) 

 

  

Method 3:  The Runge-Kutta Method 

 

In a Nut Shell:  The Runge-Kutta Method is a "fourth order" method and provides 

 

greater accuracy than Picard's or Euler's Methods although it involves more extensive 

 

calculations. 

  

 

Problem Statement:    Find an approximate solution to the first order, ordinary d.e. 

 

           dy/dx   =  f [ (x,y(x) ]     subject to the condition        y(0)  =  yo      in [a,b] 

 

 

Strategy:    Use the Runge-Kutta Algorithm as given below 

 

          yn+1  =  yn  +  h k          n  ≥  0           where  h  =  step size 

 

 

             k  =  (1/6) [ k1  +  2k2  +  2k3  +  k4 ] 

 

and      k1  =  f(xn, yn) ,         k2  =  f( xn + h/2 , yn + hk1 / 2 ) 

 

            k3  =  f( xn + h/2 , yn + hk2 / 2 ) ,   k4  =  f( xn+1 ,  yn + hk3 ) 

 

 

 

 Example:  Use the Runge-Kutta Method to find an approximate solution to 

 

 

   dy/dx  =  2 y ,   y(0) = 0.5    at  x = 0.5    using step size, h = 0.25 

 

The exact solution is   y(x)  =  (1/2) e2x   . 

 

Compare the approximate solution with the exact solution at  x = 0.5. 

 



 

Strategy:    Use the Runge-Kutta Algorithm as given below 

 

         yn+1  =  yn  +  h k            f(x,y)  =  2 y          where  h  =  step size 

 

             k  =  (1/6) [ k1  +  2k2  +  2k3  +  k4 ] 

 

and      k1  =  f(xn, yn) ,         k2  =  f( xn + h/2 , yn + hk1 / 2 ) 

 

            k3  =  f( xn + h/2 , yn + hk2 / 2 ) ,   k4  =  f( xn+1 ,  yn + hk3 ) 

 

 

                          y1  =  y0  +  h k                   y0 =  0.5    f(x,y)  =  2 y 

 

  k1  =  f(x0, y0)  =  2 y0  =  2 (0.5)  =  1.0 

 

  k2  =  f( x0 + h/2 , y0 + hk1 / 2 )  =  2[0.5 + 0.25(1.0/2)]  =  1.25 

 

  k3  =  f( x0 + h/2 , y0 + hk2 / 2 )  =  2[0.5 + 0.25(1.25/2)]  =  1.3125 

 

  k4  =  f( x1 , y0 + hk3 )  =  [0.5 + 0.25(1.3125)]  =  1.65625 

             

So   ∑ki  =  1.0 + 2(1.25) + 2(01.3125) + 1.65625  =  7.78125 

 

   k  =     ∑ki  / 6  =  1.296875 

 

y1  =  y0  +  h k  =  0.5  +  0.25[1.296875]  =  0.82421875      at  x  =  0.25 

 

 

                         y2  =  y1  +  h k                              y1 =  0.82421875       

 

  k1  =  f(x1, y1)  =  2 y1  =  2 (0.82421875)  =  1.6484375 

 

  k2  =  f( x1 + h/2 , y1 + hk1 / 2 )  =  2[(0.82421875 + 0.25((0.82421875/2)]  =  2.060546875 

 

  k3  =  f( x1 + h/2 , y1 + hk2 / 2 )  =  2[(0.82421875 + 0.25(2.060546875/2)]  =  2.163574219 

 

  k4  =  f( x2 , y1 + hk3 )  =  2[(0.82421875 + 0.25(2.163574219)]  =  2.73022469 

             

       k  =  (1/6) [ k1  +  2k2  +  2k3  +  k4 ]       yexact  =  2 e2(0.5)  =  1.359140914 

         

So   k  =  [1.6484375+ 2(2.060546875) + 2(2.163574219) + 2.73022469]/6  =  2.137817383 

 

y2  =  y1  +  h k  =   0.82421875  +  0.25 [2.137817383 ]  =  1.358673096       at  x  =  0.5 

 

 


