Fourier Series

In a Nut Shell: A Fourier Series is an infinite series of sine and cosine terms used to represent any periodic function. Suppose $f(t)$ is a periodic function. Then the Fourier Series expansion of $f(t)$ is

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t
$$

The objective is to determine the Fourier coefficients, $\mathbf{a}_{\mathbf{0}}, \mathbf{a}_{\mathbf{n}}$ and \mathbf{b}_{n}.

The Fourier Series representations of the function, $f(t)$, may contain only cosine terms, only sine terms, or both cosine terms and sine terms depending on whether the function, $f(t)$, is an even function, an odd function, or neither even nor odd. More information on details on these terms follows.

Why discuss Fourier Series?

One reason is that it provides a way to represent more complicated (more realistic) forcing functions as, for example, with applications to vibration problems with a forcing function, $\mathrm{f}(\mathrm{t})$. Let $\mathrm{x}=\mathrm{x}(\mathrm{t})$ where $\mathrm{x}(\mathrm{t})$ is the displacement of the mass, m , with time t, c is the damping constant, and k is the spring rate. The differential equation of motion for forced vibrations of mass, m, is:

$$
\mathrm{md}^{2} \mathrm{x} / \mathrm{dt}^{2}+\mathrm{cdx} / \mathrm{dt}+\mathrm{kx}=\mathrm{f}(\mathrm{t})
$$

What is a periodic function? If P is the period of the function, $\mathrm{f}(\mathrm{t})$, then the value of $f(t)$ repeats for every period. In other words, $f(t)=f(t+P)$. The period of a function, $\mathrm{f}(\mathrm{t})$, can take on any value.

Case 1: $f(t)$ has a period, P, of 2π. The Fourier series expansion of $f(t)$ is then

$$
f(t)=a_{o} / 2+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t
$$

where a_{0}, a_{n}, and b_{n} are the Fourier coefficients.

$$
a_{o}=(1 / \pi) \int_{-\pi}^{\pi} f(t) d t, \quad a_{n}=(1 / \pi) \int_{-\pi}^{\pi} f(t) \cos n t d t, \quad b_{n}=(1 / \pi) \int_{-\pi}^{\pi} f(t) \sin n t d t
$$

In a Nut Shell: The Fourier Series expansion for the function, $f(t)$, of period $2 L$ is:

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n \pi t / L+b_{n} \sin n \pi t / L
$$

where the Fourier coefficients a_{o}, a_{n}, and b_{n} are determined by
$a_{0}=(1 / L) \int \frac{L}{f(t) d t, \quad a_{n}=(1 / L) \int f(t)} \cos n \pi t / L d t \quad b_{n}=(1 / L) \int \underset{f(t)}{L} \sin n \pi t / L$
L
L
-L -L
-L

Strategy: Determine if the function, $\mathrm{f}(\mathrm{t})$, is an even function, an odd function, or a function that is neither even nor odd. Use this information to determine those coefficients that are zero at the outset.

For "even" functions such as $\mathbf{t}^{2}, \boldsymbol{c o s} \mathbf{t}, \mathbf{t} \sin \mathbf{t}$ you only need to calculate the Fourier coefficients a_{o} and a_{n} with all the b_{n} 's being zero. Note $t \sin t$, is the product of an odd function, t, with another odd function, $\sin t$, which produces an "even" function where $\mathbf{f}(\mathbf{t})=\mathbf{f}(-\mathbf{t})$.

For "odd" functions such as $t, \sin t, t \cos t$ you only need to calculate the Fourier coefficients b_{n} 's with a_{o} and all the a_{n} being zero. Note $t \cos t$ is the product of the odd function, t , with an even function, cos t , which produces an "odd" function where $f(-t)=-f(t)$.

If the function, $f(t)$, is neither even nor odd, then all the Fourier Coefficients need to be calculated.

In summary for $f(t)$ and $g(t)$:

$$
\begin{array}{ll}
f \text { odd } \rightarrow a_{n}=0 \text { for all } n \geq 0 & f \text { even and } g \text { even } \rightarrow f g \text { even } \\
\text { f even } \rightarrow b_{n}=0 \text { for all } n \geq 1 & \text { fodd and } g \text { odd } \rightarrow \text { fg even } \\
\text { f odd and } g \text { even } \rightarrow f g \text { odd or } & f \text { even and } g \text { odd } \rightarrow f g \text { odd }
\end{array}
$$

Note for an "even" function, $f(t)$, the product of $f(t) \cos n \pi t / L$ is also "even" . Thus

```
    L
        L
\(a_{0}=(1 / L) \int f(t) d t, \quad a_{n}=(1 / L) \int f(t) \cos n \pi t / L d t, \quad b_{n}=0\)
    -L -L
    L
    L
\(a_{0}=(2 / L) \int f(t) d t, \quad a_{n}=(2 / L) \int f(t) \cos n \pi t / L d t, \quad b_{n}=0\)
    \(0 \quad 0\)
```

In summary: $\quad \mathrm{f}$ odd $\rightarrow \mathrm{a}_{\mathrm{n}}=0$ for all $\mathrm{n} \geq 0$

$$
f \text { even } \rightarrow b_{n}=0 \text { for all } n \geq 1
$$

Note for an "odd" function, $f(t)$ and $f(t)=\sin n \pi t / L \quad$ which is also "odd" The product is therefore an even function.

$$
\begin{array}{ll}
b_{n}=(1 / L) \int_{-L}^{L} f(t) \sin n \pi t / L d t, & a_{0}=a_{n}=0 \\
b_{n}=(2 / L) \int f(t) \sin n \pi t / L d t, & a_{0}=a_{n}=0
\end{array}
$$

Note for an "even" function, $f(t)$ and $f(t) \cos n \pi t / L$ which is also "even" The product is therefore an even function.

L

L
$a_{0}=(1 / L) \int f(t) d t, \quad a_{n}=(1 / L) \int f(t) \cos n \pi t / L d t, \quad b_{n}=0$
-L
-L
L
L
$a_{o}=(2 / L) \int f(t) d t, \quad a_{n}=(2 / L) \int f(t) \cos n \pi t / L d t$,
$\mathrm{b}_{\mathrm{n}}=0$
0

In some cases $\mathbf{f}(\mathbf{t})$ is defined only on $\mathbf{0}<\mathbf{t}<\mathbf{L}$ and we want to represent $f(t)$ by a Fourier Series of period 2L. The extension of $\mathbf{f}(\mathbf{t})$ may be represented either as an even or as an odd function.

The figure below illustrates the "even" extension of $f(t)$.
Example
$f(t)=t, 0<t<L$
Period $=2 L$

The figure below illustrates the "odd" extension of $f(t)$.

\[

\]

A function, $f(t)$, that is neither odd nor even contains all the terms of the Fourier series.
ie.

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n \pi t / L+b_{n} \sin n \pi t / L
$$

where the Fourier coefficients a_{o}, a_{n}, and b_{n} are determined by
L
$a_{0}=(1 / L) \int f(t) d t, \quad a_{n}=(1 / L) \int f(t) \cos n \pi t / L d t, \quad b_{n}=(1 / L) \int f(t) \sin n \pi t / L d t$

- L

The figure below shows an example where $f(t)$ has a period of $2 L$ and is neither an odd nor even function.

Strategy: Drop a vertical line at $\mathrm{t}=\mathrm{L} / 2$ and a line at $\mathrm{t}=-\mathrm{L} / 2$ on the plot above.
Note the values of $f(t) \neq f(-t)$ so $f(t)$ is not an "even" function.
Also note that $\mathrm{f}(\mathrm{t}) \neq-\mathrm{f}(-\mathrm{t}) \quad$ so $\mathrm{f}(\mathrm{t})$ is not an "odd" function.
In this case, $\mathrm{f}(\mathrm{t})$, is neither even nor odd.

Suppose $f(t)$ is piecewise continuous on $[0, L]$ of period $2 L$, then the Fourier cosine series of $f(t)$ is

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n \pi t / L
$$

where

$$
a_{o}=(2 / L) \int_{0}^{L} f(t) d t, \quad a_{n}=(2 / L) \int_{0}^{L} f(t) \cos n \pi t / L d t
$$

Suppose $f(t)$ is piecewise continuous on $[0, L]$ of period $2 L$, then the Fourier sine series of $f(t)$ is

$$
f(t)=\sum_{n=1}^{\infty} b_{n} \sin n \pi t / L
$$

where
L

$$
b_{n}=(2 / L) \int_{0}^{\int} f(t) \sin n \pi t / L d t
$$

For an "even" function, $\mathrm{f}(\mathrm{t})$, defined by a single formula for $0<\mathrm{t}<2 \mathrm{~L}$
Period $=2 \mathrm{~L}$

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n \pi t / L
$$

where
L
$a_{o}=(2 / L) \int_{0}^{L} f(t) d t, \quad a_{n}=(2 / L) \int_{0}^{L} f(t) \cos n \pi t / L d t$

For an "odd" function, $\mathrm{f}(\mathrm{t})$, defined by a single formula for $0<\mathrm{t}<2 \mathrm{~L}$
Period $=2 \mathrm{~L}$

$$
f(t)=\quad \sum_{n=1}^{\infty} b_{n} \sin n \pi t / L
$$

where

$$
b_{n}=(1 / L) \int_{0}^{2 L} f(t) \sin n \pi t / L d t
$$

Example: Find the Fourier Series representation of $f(t)$ where

$$
f(\mathrm{t})=\begin{array}{cc}
0 & -\pi \leq \mathrm{t} \leq 0 \\
& \mathrm{t}^{2} \\
0 \leq \mathrm{t} \leq \pi
\end{array}
$$

Example
$\mathrm{f}(\mathrm{t})=0, \quad-\pi<\mathrm{t}<\mathrm{0}$ and
$\mathrm{f}(\mathrm{t})=\mathrm{t}^{2}, \quad \mathrm{f}, \mathrm{f}(\mathrm{t})$ is neither "even" nor "odd
Period $=2 \pi$

The Fourier series expansion of $f(t)$ is:

$$
f(t)=a_{o} / 2+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t
$$

Now calculate the Fourier coefficients $a_{0}, a_{n}, \quad b_{n}$
Note: The period of $f(t)$ is 2π and $f(t)$ is zero from $-\pi \leq t \leq 0$. So one needs to only evaluate the integrals from $0 \leq \mathrm{t} \leq \pi$.
$\mathrm{a}_{\mathrm{o}}=(1 / \pi) \int_{0}^{\pi} \mathrm{f}(\mathrm{t}) \mathrm{dt}=(1 / \pi) \int_{0}^{\pi} \mathrm{t}^{2} \mathrm{dt}=(1 / \pi) \mathrm{t}^{3} /\left.3\right|_{0} ^{\pi}=\pi^{2} / 3$
$a_{n}=(1 / \pi) \int_{0}^{\pi} f(t) \cos n t d t=(1 / \pi) \int_{0}^{\pi} t^{2} \cos n t d t \quad$ now integrate by parts:
0

$$
u=(1 / \pi) t^{2} \quad d v=\cos n t d t
$$

$$
\mathrm{du}=(2 \mathrm{t} / \pi) \mathrm{dt} \quad \mathrm{v}=(1 / \mathrm{n}) \sin \mathrm{nt}
$$

$\left.\left.\mathrm{a}_{\mathrm{n}}=(1 / \pi)\left[\left(\mathrm{t}^{2} / \mathrm{n}\right) \sin \mathrm{nt}\right] \int_{0}^{\pi}-(2 / \mathrm{n} \pi)\right) \int_{0}^{\pi} \mathrm{t} \sin \mathrm{nt} \mathrm{dt}=(-2 / \mathrm{n} \pi)\right) \int_{0}^{\pi} \mathrm{t} \sin \mathrm{nt} \mathrm{dt}$

$$
u=2 t / \pi \quad d v=-\sin n t d t
$$

$$
\mathrm{du}=2 \mathrm{dt} / \pi \quad \mathrm{v}=(1 / \mathrm{n}) \cos \mathrm{nt}
$$

$\mathrm{a}_{\mathrm{n}}=\left[2 \mathrm{t} / \mathrm{n}^{2} \cos n t\right]_{0}^{\pi}-\left(2 / \mathrm{n}^{2} \pi\right) \int_{0}^{\pi} \cos n t \mathrm{dt}=\left[\left(2 \mathrm{t} / \mathrm{n}^{2} \pi\right) \cos n t\right]{ }_{0}^{\pi}$
$a_{n}=2 \cos n \pi / n^{2}$
$\mathrm{b}_{\mathrm{n}}=(1 / \pi) \int_{0}^{\pi} \mathrm{f}(\mathrm{t}) \sin \mathrm{nt} \mathrm{dt}=(1 / \pi) \int_{0}^{\pi} \mathrm{t}^{2} \sin \mathrm{nt} \mathrm{dt}$ now integrate by parts:

$$
\begin{array}{rlrl}
u & =(1 / \pi) t^{2} & d v & =\sin n t d t \\
d u & =2 t d t & v & =(-1 / n) \cos n t
\end{array}
$$

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{n}}=(-1 / \pi)\left[\left(\mathrm{t}^{2} / \mathrm{n}\right) \cos \mathrm{nt}\right]_{0}^{\pi}+(2 / \mathrm{n} \pi) \int_{0}^{\pi} \mathrm{t} \cos \mathrm{nt} \mathrm{dt} \quad \text { integrate by parts again } \\
& u=(2 / n \pi) t \quad d v=\cos n t d t \\
& \mathrm{du}=(2 / \mathrm{n} \pi) \mathrm{dt} \quad \mathrm{v}=(1 / \mathrm{n}) \sin \mathrm{nt} \\
& \left.\mathrm{~b}_{\mathrm{n}}=(-1 / \pi)\left[\mathrm{t}^{2} / \mathrm{n} \cos \mathrm{nt}\right]_{0}^{\pi}+\left(2 / \mathrm{n}^{2} \pi\right) \mathrm{t} \sin \mathrm{nt}\right] \quad-\left(2 / \mathrm{n}^{2} \pi\right) \int_{0}^{\pi} \sin \mathrm{nt} \mathrm{dt} \\
& \left.\mathrm{~b}_{\mathrm{n}}=-(\pi / \mathrm{n}) \cos \mathrm{n} \pi+\left(2 / \mathrm{n}^{3} \pi\right) \cos \mathrm{nt}\right]{ }_{0}^{\pi} \\
& b_{n}=-(\pi / n) \cos n \pi+\left(2 / n^{3} \pi\right)[\cos n \pi-1]
\end{aligned}
$$

so

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t
$$

Now substitute in for the Fourier coefficients a_{0}, a_{n}, and b_{n}

$$
f(t)=\pi^{2} / 6+\sum_{n=1}^{\infty}\left(2 \cos n \pi / n^{2}\right) \cos n t+\left[2(\cos n \pi-1) / n^{3} \pi-(\pi \cos n \pi) / n\right] \sin n t
$$

which is the Fourier series expansion for the given $f(t)$

Example: Find the Fourier "cosine series" expansion for $f(t)$ where

$$
\mathrm{f}(\mathrm{t})=\begin{array}{cl}
\mathrm{t} & 0<\mathrm{t}<1 \\
2-\mathrm{t} & 1<\mathrm{t}<2 \quad \text { with period } 4 \text { of even extension }
\end{array}
$$

Example Fourier Cosine Series

$\mathrm{f}(\mathrm{t})=\mathrm{t}, \quad 0<\mathrm{t}<1$
$\mathrm{f}(\mathrm{t})=2-\mathrm{t}, \quad 1<\mathrm{t}<2$
Period $=4$

Even extension of $\mathrm{f}(\mathrm{t})$

Note: The Fourier Cosine series of period 4 even expansion of $f(t)$ contains only the terms:
a_{o} and the a_{n} ' s. All the b_{n} ' s are zero.

The Fourier cosine series expansion of $f(t)$ is:

$$
f(t)=a_{o} / 2+\sum_{n=1}^{\infty} a_{n} \cos (n \pi t / 2)
$$

Recall that if $f(t)$ is piecewise continuous on [0,L], then the Fourier cosine series of $f(t)$ is

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n \pi t / L
$$

where
$a_{o}=(2 / L) \int f(t) d t$,
$a_{n}=(2 / L) \int_{0}^{L} f(t) \cos n \pi t / L d t$

So in this example: $P=4$ and $L=2$
and the Fourier coefficients become
$a_{0}=(2 / 2) \int_{0}^{2} f(t) d t=\int_{0}^{1} t d t+\int_{1}^{2}(2-t) d t\left|=t^{2} / 2\right|_{0}^{1}+\left.\left(2 t-t^{2} / 2\right)\right|_{1} ^{2}=1$

Next calculate the a_{n} ' s

$$
a_{\mathrm{n}}=(2 / 2) \int_{0}^{1} \mathrm{t} \cos (\mathrm{n} \pi \mathrm{t} / 2) \mathrm{dt}+2 /\left.2 \int_{1}^{2}(2-\mathrm{t}) \cos (\mathrm{n} \pi \mathrm{t} / 2) \mathrm{dt}\right|_{1} ^{2}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
$$

Use integration by parts to evaluate the integrals I_{1} and I_{3}

$$
a_{\mathrm{n}}=(2 / 2) \int_{0}^{1} \mathrm{t} \cos (\mathrm{n} \pi \mathrm{t} / 2) \mathrm{dt}+2 /\left.2 \int_{1}^{2}(2-\mathrm{t}) \cos (\mathrm{n} \pi \mathrm{t} / 2) \mathrm{dt}\right|_{1} ^{2}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
$$

Use integration by parts to evaluate the integrals I_{1} and I_{3}

For \mathbf{I}_{1}

$$
\begin{aligned}
& \mathrm{u}=\mathrm{t} \quad \mathrm{dv}=\cos (\mathrm{n} \pi \mathrm{t} / 2) \mathrm{dt} \\
& \mathrm{du}=\mathrm{dt} \quad \mathrm{v}=(2 / \mathrm{n} \pi) \sin (\mathrm{n} \pi \mathrm{t} / 2) \\
& 1 \quad 1 \\
& \left.a_{n 1}=[(2 t / n \pi) \sin (n \pi t / 2)]-(2 / n \pi)\right) \int_{0}^{1} \sin (n \pi t / 2) d t= \\
& \mathrm{a}_{\mathrm{n} 1}=\left.(2 \mathrm{t} / \mathrm{n} \pi) \sin (\mathrm{n} \pi \mathrm{t} / 2)\right|_{0} ^{1}+\left.\left(4 / \mathrm{n}^{2} \pi^{2}\right) \cos (\mathrm{n} \pi \mathrm{t} / 2)\right|_{0} ^{1}= \\
& \left.\mathrm{a}_{\mathrm{n} 1}=2 / \mathrm{n} \pi\right) \sin (\mathrm{n} \pi / 2)-\left(4 / \mathrm{n}^{2} \pi^{2}\right)[\cos (\mathrm{n} \pi / 2)-1]
\end{aligned}
$$

For $\mathbf{I}_{2} a_{n 2}=\int_{1}^{2} 2 \cos (n \pi t / 2) d t=\left.(4 / n \pi) \sin (n \pi t / 2)\right|_{1} ^{2}=(-4 / n \pi) \sin (n \pi / 2)$

For I_{3} the calculation of $a_{n 3}$ is similar to $a_{n 1}$ using a minus sign and change of limits from 0 to 1 to 1 to 2 . The result is:

$$
\begin{aligned}
& a_{n 3}=-\left.(2 t / n \pi) \sin (n \pi t / 2)\right|_{1} ^{2}-\left.\left(4 / n^{2} \pi^{2}\right) \cos (n \pi t / 2)\right|_{1} ^{2}= \\
& a_{n 3}=-(4 / n \pi) \sin (n \pi)+(2 / n \pi) \sin (n \pi / 2)-\left(4 / n^{2} \pi^{2}\right)[\cos n \pi-\cos (n \pi / 2)]
\end{aligned}
$$

Now collect terms:
$a_{n}=a_{n 1}+a_{n 2}+a_{n 3}=$
$(2 / \mathrm{n} \pi) \sin (\mathrm{n} \pi / 2)-\left(4 / \mathrm{n}^{2} \pi^{2}\right)[\cos (\mathrm{n} \pi / 2)-1]+(-4 / \mathrm{n} \pi) \sin (\mathrm{n} \pi / 2)+$
$-(4 / n \pi) \sin (n \pi)+(2 / n \pi) \sin (n \pi / 2)-\left(4 / n^{2} \pi^{2}\right)[\cos n \pi-\cos (n \pi / 2)]$

Strategy: Group like terms.
$(2 / n \pi) \sin (n \pi / 2)-(4 / n \pi) \sin (n \pi / 2)+(2 / n \pi) \sin (n \pi / 2) \quad$ (these terms cancel)
Leaving:

$$
a_{n}=\left(4 / n^{2} \pi^{2}\right)[\cos (n \pi / 2)-1]-\left(4 / n^{2} \pi^{2}\right)[\cos n \pi-\cos (n \pi / 2)]
$$

or

$$
a_{n}=\left(8 / n^{2} \pi^{2}\right) \cos (n \pi / 2)-4 / n^{2} \pi^{2}-\left(4 / n^{2} \pi^{2}\right) \cos n \pi
$$

$a_{n}=\left(8 / n^{2} \pi^{2}\right) \cos (n \pi / 2)-4 / n^{2} \pi^{2}(1+\cos n \pi)$
$\mathrm{a}_{\mathrm{n}}=\left(8 / \mathrm{n}^{2} \pi^{2}\right) \cos (\mathrm{n} \pi / 2)-4 / \mathrm{n}^{2} \pi^{2}\left(1+(-1)^{\mathrm{n}}\right)$

So for n odd $a_{n}=0$ and for n even $\left.a_{n}=-8 / n^{2} \pi^{2}\right)[1-\cos (n \pi / 2)]$

But $\quad 1-\cos (n \pi / 2)=2 \sin ^{2}(n \pi / 4) \quad$ So $a_{n}=-\left(16 / n^{2} \pi^{2}\right) \sin ^{2}(n \pi / 4)$

Thus, the Fourier cosine series expansion of $f(t)$ is:

$$
\begin{aligned}
& f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos (n \pi t / 2) \\
& f(t)=1 / 2-16 / \pi^{2} \sum_{n \text { even }}\left(1 / n^{2}\right) \sin ^{2}(n \pi / 4) \cos (n \pi t / 2)
\end{aligned}
$$

Example: Find the Fourier series representation of $f(t)$ using a complex notation approach where

$$
\mathrm{f}(\mathrm{t})=\cos \pi \mathrm{t} / 2 \quad-1<\mathrm{t}<1 \quad \text { Shown below. }
$$

Recall that the cosine function is an "even" function i.e. $f(t)=f(-t)$

Here $P=$ period $=2=2 L$, so $L=1$ and $1 / L=1$
L represents half of one period

Since $f(t)$ is an even function, the only nonzero Fourier coefficients should be the
a_{o} and a_{n} 's
All the b_{n} 's should be zero.

$$
\mathrm{a}_{\mathrm{n}}=\int_{-1}^{1} \cos \pi \mathrm{t} / 2 \mathrm{dt}=(2 / \pi) \sin \pi \mathrm{t} /\left.2\right|_{-1} ^{1}=(2 / \pi)[\sin \pi / 2-\sin (-\pi / 2)]=4 / \pi
$$

Note that $\exp (i n \pi t)=\cos n \pi t+i \sin n \pi t$

$$
a_{n}+i b_{n}=\cos \pi t / 2 \exp (\text { in } \pi t) /\left.\operatorname{in} \pi\right|_{-1} ^{1}+\underset{-1}{(1 / 2 i n)} \int_{-1}^{1} \sin \pi t / 2 \exp (\text { in } \pi t) d t
$$

$$
u=(1 / 2 \mathrm{in}) \sin \pi \mathrm{t} / 2 \quad \mathrm{dv}=\exp (\mathrm{i} \pi \mathrm{t}) \mathrm{dt}
$$

$$
\mathrm{du}=(\pi / 4 \mathrm{in}) \cos \pi \mathrm{t} / 2 \mathrm{dt} \quad \mathrm{v}=(1 / \mathrm{in} \pi) \exp (\mathrm{i} \pi \mathrm{t})
$$

$a_{n}+i b_{n}=\cos \pi t / 2 \exp (i \pi t) /\left.i n \pi\right|_{-1} ^{1}+(1 / 2 i n)(1 / i n \pi) \sin \pi t /\left.2 \exp (i n \pi t)\right|_{-1} ^{1}$

$$
-(\pi / 4 \mathrm{in})(1 / \mathrm{in} \pi) \int_{-1}^{1} \cos \pi \mathrm{t} / 2 \exp (\mathrm{in} \pi \mathrm{t}) \mathrm{dt}
$$

$a_{n}+i b_{n}=\left(-1 / 2 n^{2} \pi\right) \sin \pi t /\left.2 \exp (i \pi t)\right|_{-1} ^{1}+\left(1 / 4 n^{2}\right) \int_{-1}^{1} \cos \pi t / 2 \exp (i n \pi t) d t$
But
$a_{n}+i b_{n}=\int_{-1}^{1} \cos \pi t / 2 \exp ($ in $\pi t) d t$

$$
\begin{aligned}
& a_{n}+i b_{n}=\int_{-1}^{1} f(t) \exp (i n \pi t) d t=\int_{-1}^{1} \cos \pi t / 2 \exp (i n \pi t) d t \\
& u=\cos \pi t / 2 \quad d v=\exp (\text { in } \pi t) d t \\
& \mathrm{du}=(-\pi / 2) \sin \pi t / 2 \mathrm{dt} \quad \mathrm{v}=(1 / \mathrm{in} \pi) \exp (\mathrm{in} \pi \mathrm{t})
\end{aligned}
$$

So collecting terms yields (bring the integral on the rhs to the lhs)

$$
\left[1-1 / 4 n^{2}\right]\left[a_{n}+i b_{n}\right]=\left(-1 / 2 n^{2} \pi\right)[\sin (\pi / 2) \exp (\mathrm{in} \pi)-\sin (-\pi / 2) \exp (-\mathrm{in} \pi)]
$$

$$
\left[1-1 / 4 n^{2}\right]\left[a_{n}+i b_{n}\right]=\left(-1 / 2 n^{2} \pi\right)[\sin (\pi / 2) \exp (\mathrm{in} \pi)-\sin (-\pi / 2) \exp (-\mathrm{in} \pi)]
$$

$$
\left[1-1 / 4 n^{2}\right]\left[a_{n}+i b_{n}\right]=\left(-1 / 2 n^{2} \pi\right)[\sin (\pi / 2) \exp (i n \pi)-\sin (-\pi / 2) \exp (-i n \pi)]
$$

$$
\left[1-1 / 4 n^{2}\right]\left[a_{n}+i b_{n}\right]=\left(-1 / 2 n^{2} \pi\right)[\exp (i n \pi)+\exp (-i n \pi)]
$$

$\left[\left(4 n^{2}-1\right) / 4 n^{2}\right]\left[a_{n}+i b_{n}\right]=\left(-1 / 2 n^{2} \pi\right)[\cos n \pi+i \sin n \pi+\cos n \pi-i \sin n \pi]$
Collect terms and solve for $a_{n}+i b_{n}$,

$$
\begin{aligned}
& \left.a_{n}+i b_{n}=\left[4 n^{2} / 4 n^{2}-1\right)\right]\left[-1 / 2 n^{2} \pi\right][2 \cos n \pi] \\
& a_{n}+i b_{n}=-(4 / \pi) \cos n \pi /\left(4 n^{2}-1\right)
\end{aligned}
$$

Next equate the real and imaginary parts to obtain:

$$
a_{n}=-(4 / \pi) \cos n \pi /\left(4 n^{2}-1\right) \text { and } b_{n}=0
$$

Now

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t
$$

So

$$
f(t)=2 / \pi-\sum_{n=1}^{\infty}\left[(4 / \pi) \cos n \pi /\left(4 n^{2}-1\right)\right] \cos n t
$$

which is the Fourier series expansion for the given $f(t)$

Now

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t
$$

So

$$
f(t)=2 / \pi-\sum_{n=1}^{\infty}\left[(4 / \pi) \cos n \pi /\left(4 n^{2}-1\right)\right] \cos n t
$$

which is the Fourier series expansion for the given $f(t)$

Note: The complex representation approach yields both a_{n} and b_{n}.

