## First Order Linear Differential Equations, Integrating Factor

In a Nut Shell: There are two common methods to solve first order, linear, ordinary
differential equations. They include:

- Separation of variables (easiest if the dependent and independent variables separate.)
- Find an integrating factor.


## Review:

A differential equation, $\mathbf{y}^{\prime}+\mathbf{p}(\mathbf{x}) \mathbf{y}=\mathbf{q}(\mathbf{x})$ is said to be linear if its dependent variable y and its derivative $y^{\prime}$ are linear.
$\left(\right.$ Linear $=$ No nonlinear terms involving $\mathbf{y}$ or $\left.\mathrm{y}^{`}\right)$

Example of a first order linear, ordinary d.e. - separable form
$d y / d x=y^{\prime}=f(x) \quad$ This is the differential equation.
$\mathrm{y}(\mathrm{a})=\mathrm{A}=$ constant $=$ This is the initial condition on y the dependent variable
Solve by direct integration of $d y=f(x) d x \quad$ (separated form)

$$
y(x)=\int f(x) d x+C \quad \text { where } C \text { is determined using the initial condition }
$$

Example: Solve the d.e. $\quad d y / d x+y \sec ^{2} x=0$
Strategy: Use separation of variables. i.e. separate y with x .
Rewrite the d.e. as follows:
$d y / d x=-y \sec ^{2} x$
Next separate variables as follows:
$d y / y=-\sec ^{2} x d x$
Integrate both sides of the d.e. :
$\ln \mathrm{y}=-\tan \mathrm{x}+\mathrm{C}_{1} \quad$ where $\mathrm{C}_{1}$ is the constant of integration
Solve for $\mathrm{y}(\mathrm{x})$.

$$
y(x)=C e^{-\tan x}
$$

Suppose the initial condition is $y(0)=1$, then
In this case $1=C \quad$ giving $\quad y(x)=e^{-\tan x}$ (result)

## Check:

One nice thing about d.e.'s is you can check your answer to verify that your solution, $\mathrm{y}(\mathrm{x})$, satisfies both the d.e. and the initial condition, in this case, $y(0)=1$, by taking the derivative of $y(x)$
$d y / d x=-\sec ^{2} x e^{-\tan x}=-\sec ^{2} x y(x)$
or $d y / d x+\sec ^{2} x y(x)=0 \quad$ which is the original d.e.
and $y(0)=1$
(Check)

Next look at the method of solution using an Integrating factor.
NOTE: Every first order, linear, ordinary d.e. has an integrating factor.

$$
y^{\prime}+p(x) y=q(x)
$$

Next look at the method of solution using an Integrating factor.
NOTE: Every first order, linear, ordinary d.e. has an integrating factor.

$$
y^{\prime}+p(x) y=q(x)
$$

Integrating factor (IF) is as follows: $\mathrm{IF}=\mathrm{e}^{\int \mathrm{p} \mid(\mathrm{x}) \mathrm{dx}} \quad$ Constant of integration

$$
\begin{aligned}
& e^{\int p(x) d x} y^{\prime}+p(x) e^{\int p(x) d x} y=q(x) e^{\int p(x) d x} \\
& d / d x\left[e^{\int p(x) d x} y\right]=q(x) e^{\int p(x) d x} \\
& e^{\int p(x) d x} y=\int\left[q(x) e^{\int p(x) d x}\right] d x
\end{aligned}
$$

$$
y(x)=e^{-\int p(x) d x}\left\{q(x) e^{\int p(x) d x}\right\} d x+C \quad \text { (solution) } \quad \begin{aligned}
& \text { Here the constant of } \\
& \text { integration matters. }
\end{aligned}
$$

Example: Solve the d.e. $y^{\prime}+\mathbf{y}=\mathbf{e}^{2 \mathrm{x}}$
with the initial condition: $y(0)=1$

Strategy: Use an integrating factor (IF).
The general form of a linear, first order, d.e. is $\quad \mathbf{y}^{\prime}+\mathbf{p}(\mathbf{x}) \mathbf{y}=\mathbf{q}(\mathbf{x})$
In this example: $\quad \mathrm{p}(\mathrm{x})=1$,
So the integrating factor is $\quad I F=e^{\int d x}=e^{x}$

Next Step: Multiply each term of the original d.e. by the integrating factor. The result is

$$
e^{x} y^{\prime}+e^{x} y=e^{3 x}
$$

Next Step: Factor terms on the left hand side as follows:

$$
d / d x\left[\begin{array}{ll}
e^{x} & y
\end{array}\right]=e^{3 x}
$$

NOTE: If you calculated the correct IF, then you should have arrived with an expression on the left hand side of the d.e. that you can integrate.

## (This result serves as a check on your IF.)

$$
\begin{array}{ll}
e^{x} y & =\int e^{3 x} d x=(1 / 3) e^{3 x}+C \\
y(x) & =(1 / 3) e^{2 x}+C e^{-x} \\
y(0) & =1
\end{array} \quad \begin{aligned}
& \text { where } C \text { is a constant to be determined } \\
& \text { from a specified initial condition such as }
\end{aligned}
$$

In this case $1=1 / 3+C, \quad$ oo $C=2 / 3$
And $\quad y(x)=(1 / 3) e^{2 x}+(2 / 3) e^{-x}$ (result)

