
Surface Integrals    
 

In a Nut Shell:  Two questions are relevant.  What is a surface integral and how do 

 

you evaluate a surface integral? 

 

Recall the line integral, I, provides the value of a function, f(x,y,z), evaluated along  

 

a curve, C, in space.  Here the line integral is       I  =  ∫ f(x, y, z) ds 

                                                                                     C 

where   ds  is the arc length along the curve, C            

 

The surface integral, Is, is analogous to the line integral in that it provides the value of a  

 

function, f(x,y,z), evaluated over a “smooth” surface, S, in space.  Here the surface integral 

 

 is  Is   =     ∫  ∫ f(x, y, z) dS  where   dS  is the element of surface area on the spatial surface 

 

                          

How do you evaluate a surface integral? 

 

Usually the surface, S, in space is somewhat complicated.  So one strategy is to 

 

transform the element of surface area, dS, from the x-y-z space into a parallelogram  

 

dA = du dv  in the u-v plane as shown in the figure below. 

 

where  r(u,v) is the parametric representation of the surface, S. 

 

r(u,v)  =  <  x(u,v), y(u,v), z(u,v) >   is the position vector to point on surface, S 

 

 

 

 

 
 



 

Also note the partial derivatives       ru  =  ∂ r / ∂ u   and  rv  =  ∂ r / ∂ v 

 

Now the element of surface area is    dS  =  |   ru du  x  rv dv |  =  |   ru  x  rv  |  du dv 

 

    but    ru  x  rv    =  N  =  normal to the surface,  S    and    du dv  =  dA 

 

So the relation between the element of surface area,  dS,  and the element of area, dA 

is   

                         dS  =  | N |  dA         (See the figure above) 

 

 

 

Evaluation of the surface integral   Is   =       ∫ f(x, y, z) dS    is a two-step process. 

                                                                     S 

                                                                           

         •    First write the integrand f(x,y,z) as a function of two independent variables. 

 

              i.e.  If the surface is given by  z  =  g(x,y), then   f(x,y,z)  =  f(x, y, g(x,y)) 

 

        •   Next write the element of surface area, dS, in terms of the area element, dA. 

                              

      dS =  | N(u,v)| du dv  =  | N(u,v)| dA    where  N(u,v)  =  ∂r/∂u  x  ∂r/∂v  

 

       take   u  =  x    and   v  =  y    so  N(x,y)  =  ∂r/∂x  x  ∂r/∂y       

 

Here N(x,y)  represents the normal vector to the surface, S, at each arbitrary 

point (x,y,z) and   r  =  xi  +  yj  +  g(x,y)k    is the position vector from the origin of the 

coordinate system to any arbitrary point (x,y,z) on the surface, S.  See the figure below. 

 

 

 

                    
 

 
 

 



 

Note:  Domain D shown in the previous figure is the “area” projected on to the 

relevant plane.  In this case it is projected on to the x-y plane since the surface, S, 

was described by   z =  g(x,y).   

 

 

When the surface, S, is described by    z  = g(x,y)     (recall let   u  =  x  and  v  =  y)           

the position vector to an arbitrary point on S  is      r  =  xi  +  yj  +  g(x,y)k     

 

Then one can use x and y rather than u and v as the parameters describing the surface, S.   

So the normal vector to  S is   N(u,v)  =  N(x,y)  =   rx  x  ry     which yields the  

Following   3 x 3 determinant.    Note:  N  is not a unit vector. 

 

                                 i             j           k                      i            j           k                

 N(x,y)  =    det     ∂x/∂x    ∂y/∂x    ∂g/∂x   =    det    1           0      ∂g/∂x        

                              ∂x/∂y    ∂y/∂y    ∂g/∂y                  0           1      ∂g/∂y 

 

 

N(x,y)  =  - ∂g/∂x i   -  ∂g/∂y j  + 1  k     and     | N(x,y) |  = √[1 + (∂g/∂x)2 + (∂g/∂x)2] 

 

 

Thus      dS  =  √[1 + (∂g/∂x)2 + (∂g/∂x)2] dx dy        and   

 

              IS  =  ∫ ∫ f(x, y, z) dS  =  ∫ ∫  f(x, y, g(x,y)) √[1 + (∂g/∂x)2 + (∂g/∂x)2] dx dy 

                       S                            D 

 

If, on the other hand,  the surface was described by  y  =  g(x,z), then D would be  

the “area” projected on to the x-z plane, etc. 

 

 

Options:  You have two options in evaluating surface integrals. 

 

Option 1:     You could attempt direct evaluation of the surface integral 

  

                       IS  =  ∫   ∫  f(x,y,z)  dS  

                                 S 

 

Option 2:    You could use a transformation     dS  =  |  ru x rv  |  dA 

 

                        IS  =  ∫   ∫  f(x,y,z)  dS  =   ∫   ∫  f(x,y,z)  |  ru x rv  |  dA 

                                  S                              D 

 

 

Strategy for Surface Integrals 

 

In a Nut Shell:   The strategy used to evaluate surface integrals depends on whether you use 

direct evaluation of the integral or you choose to use the method of transformation. 

 

Note:  If the surface,  S, is described by    z =  g(x,y) then you will integrate in domain 

D  in the x-y plane. 

 

On the other hand,  if the surface is described by  y  =  g(x,z), then D would be  

the “area” projected on to the x-z plane and integration will be in the x-z plane.  etc. 

 



 

Strategy for Option 1:     Use direct evaluation of the surface integral. 

  

       IS  =  ∫   ∫  f(x,y,z)  dS  = ∫ ∫ F ∙ n dS  =  ∫ ∫ ∫  div (F)  dV  (from Divergence Theorem) 

                 S                            S                     E 

 

where    f = f(x,y,z)  =  function of x,y,z whose domain includes the surface, S 

               F  =  F(x,y,z)  is a vector field 

               n  =  unit vector normal to the surface,  S 

              dS = element of area on the surface, S 

 

                           •   Construct a view of surface, S, showing element of surface area, dS. 

 

                           •    Express  dS  in terms of parameters on the surface of S. 

  

 

                           •    Express  f(x,y,z) in terms of parameters on the surface, S. 

 

                           •    Evaluate     ∫   ∫  f(x,y,z)  dS 

                                                     S 

 

 

Strategy for Option 2:    You could use a transformation     dS  =  |  ru x rv  |  dA 

 

                        IS  =  ∫   ∫  f(x,y,z)  dS  =   ∫   ∫  f(x,y,z)  |  ru x rv  |  dA 

                                  S                              D 

             •   Construct a view of surface, S. 

 

             •   Show the position vector from the origin to an arbitrary point on surface, S. 

 

                                          r   =  < x, y, z > 

 

             •   Determine which plane to project  S on giving domain D.  i.e. 

                  If the surface, S, is given by  z  =  g(x,y)  then express the 

                  position vector as: 

 

                        r   =  <  x, y, g(x,y)  > 

 

                   and the projection will be on the x-y plane to determine domain, D. 

 

                   Note:  If the surface, S, was given as    x = g(y,z)  then 

 

                                   r   =  <  g(y,z), y, z)  >  and the projection is on the y-z plane 

 

 

                 •   In this case for z = g(x,y), calculate   rx  and  ry  ,  rx  x  ry ,  and   | rx  x  ry  | 

 

                 •   Use:       dS  =   | rx  x  ry  | dA 

   

                 •   Evaluate:    ∫   ∫  f(x,y,z)  |  ru x rv  |  dA 

                                          D 

 

Note:   |  ru x rv  |   is not a unit vector 

 



 

Example:    Evaluate the surface integral                   IS   =  ∫  ∫ ( z +  x2 y ) dS 

 

where   S  is the part of the cylinder  y2  +  z2   =  1   that lies in the first quadrant 

and bounded by the planes  x = 0 and x = 3.   See the figure below. 

 

 

                         
 

 

 

Strategy:   Use a transformation to evaluate the surface integral. 

 

 

Step 1:  Show and express the position vector, r, from the origin to and arbitrary point 

              on the surface, S.   Projection of   S  is on to the x˗ y plane as shown above in 

              the figure on the right. 

 

 

                                          
 

 

 

                                               r  =  < x, y, z >  =  <  x, y, √ ( 1 ˗  y2 ) > 

 

 

Step 2:  Calculate the normal to the surface, S.     N  =  rx  x  ry . 

 

    rx  =  < 1, 0, 0 >       ry  =  <  0, 1, ˗ y / √ ( 1 ˗  y2 )  > 

 

 

Step 3:  Calculate the normal to the surface, S.     N  =  rx  x  ry . 

 

              rx  x   ry  =  <  0,  y / √ ( 1 ˗  y2 ) , 1  > 

 

So                | N | =   √ 1 / ( 1 ˗  y2 ) 

 



 

Step 4:  Write the surface area element,  dS  in terms of dA.       dS  =  | N | dA 

 

                dS  =  √ 1 / ( 1 ˗  y2 )  dx dy 

 

So     

                                                       y = 1   x = 3 

    I  =  ∫  ∫  ( z  +  x2 y )  dS   =      ∫         ∫     (√ ( 1 ˗  y2 ) + x2 y )  √ 1 / ( 1 ˗  y2 )  dx dy 

            S                                         y = 0   x = 0 

 
 

 

Step 5:  Evaluate the integral over the domain, D. 

 

                y = 1   x = 3 

    ID  =       ∫          ∫     [  ( 1  +     x2 y / √ 1 / ( 1 ˗  y2 )  ]  dx dy 

              y = 0    x = 0 

 

 

Step 6:  Perform integration. 

 

                y = 1   x = 3                y = 1    x = 3 

    ID  =       ∫          ∫     [ dx dy  +    ∫          ∫ √ ( 1 + x2 y / √ 1 / ( 1 ˗  y2 )  ]  dx dy 

              y = 0    x = 0                 y = 0    x = 0 

 

Hint:  Use the substitution     w  =  1 ˗  y2   to help with integration. 

 

      ID  =     3  +  9  =  12    (result) 
 

 

 

Example:    Evaluate the surface integral                   IS   =  ∫  ∫ ( z +  x2 y ) dS 

 

where   S  is the part of the cylinder  y2  +  z2   =  1   that lies in the first quadrant 

 

and bounded by the planes  x = 0 and x = 3.   See the figure below. 

 

 

                         
 

 

 

Strategy:   Use direct evaluation of the surface integral. 

 



 

Steps1 and 2:  Show surface and express dS in terms of parameters on the surface, S. 

 

                                          S:   y2  +  z2 =  1 

 

From the figures shown above:    dS  =  (1) dθ dx 

 

 

Step 3:  Express  f(x,y,z) in terms of parameters on S. 

 

From the figure above on the right:    z = sin θ   and  y = cos θ 

 

So f(x,y,z)  =   z + x2y  =  sin θ  +  x2 cos θ 

 

 

Step 4:  Evaluate the surface integral. 

 

               x = 3       θ = π/2 

    I   =      ∫                ∫      ( sin θ  +  x2 cos θ )  dθ dx 

             x = 0        θ = 0 

 

The result is    I  =  12    (same result as from using option 2, transformation) 

 

 

Example:    Evaluate the surface integral                   IS   =  ∫  ∫  y2  dS 

 

where   S  is the part of the sphere  x2  +  y2  +  z2  =  4   that lies inside the 

cylinder  x2  +  y2  =  1  and above the xy-plane.   See the figure below. 

 

                 
 

 

 

Strategy:   Use a two step process. 

 

Step 1:  Express f(x,y,z) in terms of the independent variables (in this case)  x and y. 

 

So in this example      f(x,y,z)  =  y2 

 

Step 2:  Write the surface area element,  dS  in terms of dA.   dS  =  | N | dA 

In this example the projection of dS  is a circle of radius 1 in the xy-plane. 

 

 



 

                            
 

Next calculate  N :         N(x,y)  =  rx  x  ry    where  r  =  x i + y j + z k 

 

 

In this example  N(x,y)  =  rx  x  ry    where  r  =  x i + y j + z k 

 

For the surface,  S,  r  =  x i + y j + z k  =  x i + y j + [√ (4 - x2 – y2)] k 

 

rx  =     i + 0 j + [ -x / √ (4 - x2 – y2)] k 

 

ry  =  0 i + 1 j + [ -y / √ (4 - x2 – y2)] k 

 

Use the cross product to find the normal vector, N, to the surface, S: 

 

                                          i                     j                     k  

N(x,y)    =   det                 1                    0        [ -x / √ (4 - x2 – y2)]   

                                          0                    1        [ -y / √ (4 - x2 – y2)]   

Expansion of this determinant gives 

 

N(x,y)    =   [  x / √ (4 - x2 – y2)]  i  +  [  y / √ (4 - x2 – y2)]  j  +  k 

 

Thus    |  N  |   =   √ [ 4 / (4 - x2 – y2)]   

 

 

So the surface integral   IS  =    ∫ f(x,y, z(x,y)) N dA   becomes 

 

IS  =    ∫ ∫  y2  √ [ 4 / (4 -  x2 ˗  y2 )] dA   =    ∫ ∫  y2  √ [ 4 / (4 - x2 ˗  y2 )] dx dy 
            D                                                       D 

 

Now   dA  =  dx dy  =  r dr dθ  (in terms of polar coordinates) 

To simplify the integration switch to polar coordinates where   y = r sin θ. 

 

             θ = 2π    r = 1 

Thus       ∫             ∫    (r sin θ)2  √ [ 4 / (4 - r2 ) ] r dr dθ  or 

             θ = 0      r = 0 

 

             θ = 2π                  r = 1 

Thus       ∫     [  sin2 θ         ∫    √ [ 4 / (4 - r2 ) ] r3 dr dθ    or 

             θ = 0                    r = 0 

 

To evaluate this integral use    sin2 θ  =  ( 1 – cos 2θ) / 2  for integration on  θ 

 and  substitute   r =  2 sin φ  for the integration on  r. 

 

The result is         IS  =    π (  32/3  -  6√3 ) 

 



 

 

Example:    Evaluate the same surface integral                   IS   =  ∫  ∫  y2  dS 

using a direct approach 

 

where   S  is the part of the sphere  x2  +  y2  +  z2  =  4   that lies inside the 

 

cylinder  x2  +  y2  =  1  and above the xy-plane.   See the figure below. 

 
The surface, S, in this example is just the “cap” of the sphere - -  the part of the sphere   

x2  +  y2  +  z2  =  4   that lies inside the cylinder  x2  +  y2  =  1  and above the xy-plane. 

So direct evaluation using spherical coordinates may provides an alternate solution. 

 

 
For spherical coordinates:      x =  ρ sin φ cos θ,  y  =  ρ sin φ sin θ,  and  z  =  ρ cos φ  

 

From the figure below we find the expression for the element of surface area, dS, 

 in spherical coordinates as      dS  =  ρ dφ  ρ sin φ dθ 

 

 

 

                                     
 

 

 

In this example  ρ = 2    so    dS  =  4 sin φ dφ dθ 

 

Next we must find the limits of integration for the intersecting sphere and cylinder. 

 

From  x2  +  y2  =  1  =  ( ρ sin φ cos θ)2  +  ( ρ sin φ sin θ)2   =  ρ2 sin2 φ    (cylinder) 

 

Since the radius of the sphere is 2 we get  1  =  4 sin2 φ .  Thus   sin φ  =  ± ½  

 

So the limits of integration on  φ are  0  to  π / 6  and the limits of integration on 

θ   are  0  to  2π. 

                                 The surface integral,  IS,   becomes   

 

             θ = 2π    φ = π / 6   

Thus       ∫             ∫      ( 4 sin2 φ sin2 θ ) 4 sin φ dφ dθ  

             θ = 0      φ = 0 

 

This integration yields the same result as before.      IS  =    π (  32/3  -  6√3 ) 

 



 

 

Surface Integrals  with “oriented surfaces”  

 

 
In a Nut Shell:  Surface integrals also appear in vector form 

 

        ∫  ∫  F  ·  dS        =    ∫  ∫  F  ·  n  dS                          Note:    dS  =  n dS 

         S                               S 

They involve the “dot product”  of a vector function,  F =  F(x,y, z) with  n,   the  

 

unit normal to the surface, S.  In such cases the unit normal to the surface may point  

 

out (say the top of the surface) or may point in (say the bottom of the surface).   

 

Such a surface, S, is said to be “orientable”.  The direction of the unit vector, n, 

 

establishes the orientation of the surface. 

 

 

Definitions: 

 

F  =  vector field  (one example is fluid velocity giving rise to flux across a surface) 

dS   element of oriented surface S       where  dS  =  n dS 

n  =  unit vector normal to oriented surface 

 

as before the unit vector comes from the cross product   n  =    (ru x rv) / | ru x rv |   

where  r  is the position vector to the surface, S,  given by 

 

                        r  =  < x, y, z >  =  <  x(u,v), y(u,v), z(u,v) >  =  r(u,v) 

 

 

"Oriented" Surface Integral: 

 

 

              ∫  ∫  F  ·  dS   =  ∫  ∫  F  ·  n dS    =    ∫  ∫  F  ·  (ru x rv) / | ru x rv | dS 

               S                       S                              S 

 

and recall   dS  =  | ru x rv |dA     where | ru x rv | transforms the element of area, dS, 

on the surface, S, to the element of area, dA,  on the uv-surface in the domain, D. 

                                                                               

So the surface integral becomes     note:  dS  =  | ru x rv |dA      

                           

  ∫  ∫  F  · dS   =   ∫  ∫  F  · n dS   =  ∫  ∫  F  · (ru x rv) / | ru x rv | dS =   ∫  ∫  F  · (ru x rv) dA 

   S                       S                         S                                                   D 

 

Note that the dot product,    F  ·  (ru x rv) ,  is a scalar function and therefore it is 

 

a scalar field.  So the same two approaches, the direct approach and the  

 

transformation approach, still apply to evaluate the scalar form of surface  

 

integrals starting with this vector form of surface integral.   

 



 

Key point, you should determine from the statement of the problem whether the 

 

unit normal points above or below (in or out, up or down) the surface, S.   

 

Note:  S is the total surface and may consist of more than one individual surface as  

 

illustrated in the figure below.   

 

 

In this situation imagine flux passing across surfaces,   

 

S1  (a plane) and  S2   (a paraboloid). 

 

 

 

                                   
 

 

 

 

 

  IS   =   ∫ ∫ F • dS  =    ∫ ∫ F • ( ru  x  rv ) / | ru  x  rv | dS  

             S                     S 

 

Now    dS  =  | ru  x  rv | dA    so    IS   =   ∫ ∫ F • ( ru  x  rv )  dA  

                                                                   D 

 

 

Recall that when the surface, S, is described as follows: 

 

                  z  = g(x,y)              (recall let   u  =  x  and  v  =  y)           

 

the position vector to an arbitrary point on  S  is      r  =  xi  +  yj  +  g(x,y)k     

 

Then one can use x and y rather than u and v as the parameters describing the surface, S.   

 

So the normal vector to  S is   ru  x  rv =   rx  x  ry     and 

 

 

                                             IS   =   ∫ ∫ F • ( rx  x  rv )  dA  

                                                        D 

 

 



 

Example:       Evaluate the surface integral        ∫ ∫  F  ·  n  dS 

                                                                              S 

where  F  =  <  xy,  yz , xz  >   

 

and   S  is the part of the paraboloid   z =  4 -   x2  -  y2   (not shown) that lies above  

 

the square  0  ≤  x  ≤  1, 0  ≤  y  ≤  1  (domain D) and has an upward orientation. 

 

 

 

                                    

                 
 

 

                 

 

Step 1:  Express F(x,y,z) in terms of the independent variables (in this case)  x and y. 

 

 

So in this example      F(x,y,z(x,y))  =  <  xy, y( 4 -   x2  -  y2 ), x(4 -   x2  -  y2 ) >   

 

 

Step 2:  Write the surface area element,  dS  in terms of dA.   dS  =  | N | dA 

 

In this example the projection of dS  is a circle of radius 1 in the xy-plane. 

 

 

Step 3:   Calculate  N :         N(x,y)  =  rx  x  ry    where  r  = <  x,  y,  z >  so 

 

r  =  <  x,  y,   (4 -   x2  -  y2 )  >  so  rx  =  <  1, 0, -2x >   and    ry  =  <  0, 1, -2y >            

 

so  taking the cross product,  N  =  < 2x , 2y, 1 >   and   | N |  =  √ ( 4x2  +  4y2  +  1 ) 

 

n  =    N  /  | N |   =  < 2x , 2y, 1 >  /  √ ( 4x2  +  4y2  +  1 ) 

 

 

Note:                   n  =    N  /  | N |   =  < 2x , 2y, 1 >  /  √ ( 4x2  +  4y2  +  1 ) 

    

S is the part of the paraboloid   z  =  4  -  x2  -  y2  that lies above the square 

0  ≤  x  ≤  1,   0  ≤  y  ≤  1  and has upward orientation.  See figure below. 

 



                               

                                     
 

 

 

Proceed with calculation of the surface integral: 

 

             ∫ ∫  F  ·  n  dS   =  ∫ ∫  F  ·  ( rx x  ry )  dA       where   dA  =  dx dy 

             S                          D  

 

       Here    F (x, y, z)  =  <  xy,   yz,   zx  >                 note upward orientation     

                                                                                                             | 

                      Now   r  =  < x ,  y,   4  -  x2  -  y2   >      so      rx x  ry  =  <  2x,  2y,  1  > 

 

 So      F  ·  ( rx x  ry )  =  2x2  +  2y2z  +  xz     (scalar function) 

 

On the surface,  S,          z  =  4  -  x2  -  y2        So the integral becomes 

 

x = 1       y = 1 

  ∫              ∫     (  2x2  +  8y2    -2x2y2  - 2y4  + 4x  - x3  -xy2  ) dx dy  =  713 / 180 

x = 0      y = 0 

 

 


