Centroids/Average Value of a Function

Key Concept: The centroid of an area is the idealized location where all of the area can be thought to be concentrated.

In a Nutshell: Apply the principle of first moments to calculate the centroid of areas in a plane. To calculate the x -coordinate of the centroid:

$$
A x_{c}=\int x d A
$$

Likewise, to calculate the y-coordinate of the centroid:

$$
A y_{c}=\int y d A
$$

For Areas: A is the total area in the xy-plane
x is the x -coordinate to the centroid of the element of area, dA
y is the y-coordinate to the centroid of the element of area, $d A$
x_{c} is the x -coordinate of the centroid
y_{c} is the y-coordinate of the centroid

To illustrate: Pick up a yard stick. To "balance" it at its centroid, position your finger 18 inches from each end. Equal amounts of weight on each side result in the balance.

Example:

Find the x and y -coordinates of the centroid for the shaded area bounded by the curve $y=2 x-x^{2} / 6$ and $y=(1 / 2) x$ shown in the figure below.

Strategy:

Use the principle of first moments. See the figure below.

1. $\quad \mathrm{y}_{\mathrm{c}} \mathrm{A}=\int\left[\left(\mathrm{y}_{\text {upper }}+\mathrm{y}_{\text {lower }}\right) / 2\right]\left[\mathrm{y}_{\text {upper }}-\mathrm{y}_{\text {lower }}\right] \mathrm{dx}$

$$
\mathrm{y}_{\mathrm{c}} \mathrm{~A}=\int\left[\mathrm{y}_{\text {upper }}^{2}-\mathrm{y}^{2}{ }_{\text {lower }}\right](1 / 2) \mathrm{dx}
$$

where $y_{\text {upper }}=2 x-x^{2} / 6$ and $y_{\text {lower }}=(1 / 2) x$

Show the element of area, dA and use it to calculate A the total area.
2.

$$
A=\int\left[y_{\text {upper }}-y_{\text {lowerer }}\right] d x
$$

3. Determine the limits of integration.

Perform the integrations and use it to solve for
4. $\left.\quad \mathrm{x}_{\mathrm{c}}=\int \mathrm{x}\left[\mathrm{y}_{\text {upper }}-\mathrm{y}_{\text {lower }}\right] \mathrm{dx}\right) / \mathrm{A}$

$$
y_{c}=\int\left[\left(y_{\text {upper }}^{2}-y^{2}{ }_{\text {lowere }}\right) / 2\right] d x / A
$$

$$
y_{\text {upper }}=2 x-x^{2} / 6 \text { and } y_{\text {lower }}=(1 / 2) x
$$

The element of area, $\mathrm{dA},=\left[\mathrm{y}_{\text {upper }}-\mathrm{y}_{\text {lower }}\right] \mathrm{dx}$
The limits of integration in the x -direction are from $\mathrm{x}=0$ to $\mathrm{x}=9$. Calculate the total area, A.

$$
A=\quad \int_{x=0}^{x=9}\left(2 x-x^{2} / 6-1 / 2 x\right) d x
$$

The result is $\mathrm{A}=81 / 4 \mathrm{in}^{2}=20.25 \mathrm{in}^{2}$

$$
\begin{aligned}
& \text { Next calculate } \int x d A=\int x\left[2 x-x^{2} / 6-1 / 2 x\right] d x=\int\left[2 x^{2}-x 3 / 6-1 / 2 x^{2}\right] d x=91.125 \\
& \mathrm{x}=0 \\
& \mathrm{x}_{\mathrm{c}}=91.125 / 20.25=4.5 \mathrm{in}
\end{aligned}
$$

Next calculate:

$$
\begin{gathered}
\mathrm{y}_{\mathrm{c}} \mathrm{~A}=\int\left[\mathrm{y}_{\text {upper }} / 2-\mathrm{y}^{2} \text { lower } / 2\right] \mathrm{dx} \\
\mathrm{y}_{\mathrm{c}} \mathrm{~A}=\int_{\mathrm{x}=0}^{\mathrm{x}=9}\left[\left(2 \mathrm{x}-\mathrm{x}^{2} / 6\right)^{2}-(1 / 2 \mathrm{x})^{2}\right] / 2 \mathrm{dx} \\
\mathrm{y}_{\mathrm{c}} \mathrm{~A}=\int_{\mathrm{x}=0}^{\mathrm{x}=9}\left[15 / 8 \mathrm{x}^{2}+\mathrm{x}^{4} / 72-\mathrm{x}^{3} / 3\right] \mathrm{dx}=5 / 8 \mathrm{x}^{3}+\mathrm{x}^{5} / 360-\mathrm{x}^{4} /\left.12\right|_{0} ^{9} \\
\mathrm{y}_{\mathrm{cg}} \mathrm{~A}=\left[(9)^{3} / 2\right][5 / 4+81 / 180-3 / 2]=81(36) / 40 \mathrm{in}^{3} \\
\text { So } \quad \mathrm{y}_{\mathrm{cg}}=[81(36) / 40] /(81 / 4)=36 / 10=3.60 \mathrm{in} . \quad \text { (result) }
\end{gathered}
$$

Average Value of a Function

In a Nut Shell: The average value of a function, $\mathrm{f}_{\text {ave }}$, over an interval from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$ is defined as follows:

$$
f_{\text {ave }}=\underset{[1 /(b-a)] \iint_{x=a}^{x} f(x) d x}{ }
$$

Example: Find the average value of $f(x)=\sin ^{2}(x)$ over the interval $[0, \pi]$.

$$
\mathrm{f}_{\mathrm{ave}}=(1 / \pi) \int_{\mathrm{x}=0}^{\pi} \sin ^{2}(\mathrm{x}) \mathrm{dx}
$$

Use the trig substitution $\sin ^{2}(x)=[1-\cos (2 x)] / 2$

$$
\begin{gathered}
\left.\mathrm{f}_{\text {ave }}=(1 / \pi) \int_{\mathrm{x}=0}^{\mathrm{x}=\pi}[1-\cos (2 \mathrm{x})] / 2 \mathrm{dx}=(1 / \pi)[\mathrm{x}-(\sin 2 \mathrm{x}) / 2] / 2\right] \mid \\
0
\end{gathered}
$$

