Line Integrals

In a Nut Shell: The definite integral you studied in integral calculus

 $\int f(x) dx$ can be thought of as an integral of f(x) along the x-axis.

Similarly, an integral could be evaluated along a curve in a plane or a curve in space. Such integrals are called **"line integrals"**.

Suppose f(x, y, z) is a smooth curve in space defined by the parameter t as follows

$$x = x(t), y = y(t), z = z(t)$$

Now by the Pythagorean theorem $ds = \sqrt{[(dx)^2 + (dy)^2 + (dz)^2]}$

where ds represents the differential (arc) length along the curve, s, in space.

So

$$\int_{a}^{b} f(x, y, z) ds = \int_{a}^{b} f(x, y, z) (ds/dt) dt = \text{line integral of } f(x, y, z) \text{ along}$$

b

$$\int f(x, y, z) \sqrt{[(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2]} dt$$

a

For functions in a plane the vector field is $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ and the vector element along the curve, C, in the plane is $d\mathbf{r} = dx \mathbf{i} + dy \mathbf{j}$

In this case the dot product

 $\mathbf{F}(x, y) \cdot d\mathbf{r}$ yields the following line integral along C in the plane

$$\int P(x, y) dx + \int Q(x, y) dy$$
C
C
C

The line integral can also be expressed in terms of each coordinate variable (x, y, z). Suppose $\mathbf{F}(x, y, z)$ is a vector field defined as

$$\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{P}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \,\mathbf{i} + \mathbf{Q}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \,\mathbf{j} + \mathbf{R}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \,\mathbf{k}$$

where P(x, y, z), Q(x, y, z), and R(x, y, z) are continuous functions of x, y, and z and dr is a vector element of length along the curve C in space

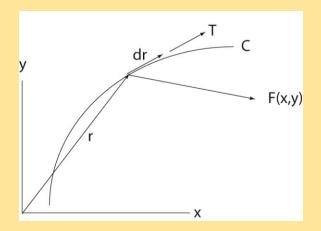
here $d\mathbf{r} = d\mathbf{x} \mathbf{i} + d\mathbf{y} \mathbf{j} + d\mathbf{z} \mathbf{k}$ Then the dot product

 $\mathbf{F}(x, y, z) \cdot d\mathbf{r}$ yields the following line integral along the curve C in space

 $\int P(x, y, z) dx + \int Q(x, y, z) dy + \int R(x, y, z) dz$ C C C Both dot products discussed here $\mathbf{F}(x, y) \cdot d\mathbf{r}(x, y)$ and $\mathbf{F}(x, y, z) \cdot d\mathbf{r}(x, y, z)$

appear in engineering as the incremental work of the "force" F along the path, C. i.e.

Suppose \mathbf{F} is a force acting on a particle in the x-y plane and \mathbf{r} is the position vector from the origin to the particle.



Let the particle move an amount ds along the curve, C, in the x-y plane under the influence of the force \mathbf{F} . The change in the position vector along the curve (tangent to C) is d \mathbf{r} . Then the incremental work, dW, done on the particle by the force \mathbf{F} is the dot product of \mathbf{F} and d \mathbf{r} . Thus the line integral along C gives the work, W, done by the force \mathbf{F} acting on the particle as it moves along C.

W = $\int \mathbf{F} \cdot d\mathbf{r} = \int \mathbf{F} \cdot (d\mathbf{r}/dt) dt$ and $d\mathbf{r} = \mathbf{T} ds$, **T** is the unit tangential vector to the curve, C C

It is possible that the line integral of the function, **F**, is independent of the curve (path), C,

in the x-y plane. This situation occurs when the force, **F**,

 $\mathbf{F} = \mathbf{P}(\mathbf{x},\mathbf{y}) \,\mathbf{i} + \mathbf{Q}(\mathbf{x},\mathbf{y}) \,\mathbf{j}$

is conservative In such a case, the curl of **F** must be zero.

curl of $\mathbf{F} = \partial \mathbf{Q} / \partial \mathbf{x} - \partial \mathbf{P} / \partial \mathbf{y} = 0$ if the force is conservative

So $\partial P/\partial y = \partial Q/\partial x$

And the (vector field) force, \mathbf{F} , can be expressed in terms of the gradient of a potential function (scalar function, ϕ)

φ(x,y). i.e.

 $\mathbf{F} = \operatorname{grad}(\boldsymbol{\varphi})$

Suppose you were to evaluate the line integral

$$\int P(x, y) dx + \int Q(x, y) dy$$
C
C
C

where the path (curve) C is somewhat complicated. Then you might first check to see if the "force" (vector field) is conservative.

$$\mathbf{F} = \mathbf{P}(\mathbf{x},\mathbf{y}) \,\mathbf{i} + \mathbf{Q}(\mathbf{x},\mathbf{y}) \,\mathbf{j}$$

i.e. Does $\partial P/\partial y = \partial Q/\partial x$? If so, the force, **F**, is conservative.

Then the line integral, $\int \mathbf{F} \cdot d\mathbf{r}$, is independent of its path and you can simplify the C

calculation by selecting an easier path.

Example: Evaluate the line integral for $P(x,y) = y^2$ and Q(x,y) = x along the curve, C, given by $x = y^3$ from (-1, -1) to (1, 1).

 $I = \int_{C} y^{2} dx + \int_{C} x dy$ So the line integral becomes $I = \int_{-1}^{1} y^{2} 3y^{2} dy + \int_{-1}^{1} y^{3} dy$ $I = (3/5)y^{5} + (1/4)y^{4} |_{-1}^{1} = [(3/5) +)] - [-(3/5) + (1/4)] = 6/5$

Example: Evaluate the line integral $I = \int f(x,y,z) ds$ for $0 \le t \le 1$ where C

 $\begin{aligned} f(x,y,z) &= 2x + 9xy & \text{along the curve, C}, & \text{given by } x = t, \ y = t^2, \ z = t^3 \\ I &= \int f(x,y,z) \ ds = \int f(x,y,z) \ (ds/dt) \ dt \ , \ ds/dt = \sqrt{[dx/dt]^2 + (dy/dt)^2 + dz/dt)^2]} dt \\ I &= \int_{0}^{1} [2t + 9 \ t \ t^2] \ \sqrt{[1 + (2t)^2 + (3t^2)^2]} \ dt = \int_{0}^{1} [2t + 9t^3] \ \sqrt{[1 + 4t^2 + 9t^4]} \ dt \end{aligned}$

Let $w = 1 + 4t^2 + 9t^4$, then $dw = 4(2t + 9t^3) dt$

or $(2t + 9t^3) dt = (1/4) dw$ so the integral becomes

 $I = \int_{1}^{14} (1/4) w^{1/2} dw = (1/4)[(2/3)w^{3/2}] | \int_{1}^{14} = (1/6)[14\sqrt{14} - 1]$

Example: Determine if the force, **F**, is conservative where $\mathbf{F} = 2\mathbf{x} e^{\mathbf{y}} \mathbf{i} + \mathbf{x}^2 e^{\mathbf{y}} \mathbf{j}$

 $\mathbf{F} = P(x,y) \mathbf{i} + Q(x,y) \mathbf{j}$ Now calculate $\partial P/\partial y$ and $\partial Q/\partial x$.

 $\partial P/\partial y = 2x e^{y}$ and $\partial Q/\partial x = 2x e^{y}$ Since $\partial P/\partial y = \partial Q/\partial x$ F is conservative.

Next determine the value of the line integral

I = $\int 2x e^y dx + x^2 e^y dy$ from (0,0) to (1,-1)

Note: The value of the line integral should not depend on the path.

Pick an easy path as follows: Integrate along the x-axis from x = 0 to x = 1 (y = 0)

Then integrate along the line x = 1 from y = 0 to y = -1. With this path the

integral simplifies to the following:

 $I = \int_{0}^{1} 2x e^{0} dx + \int_{0}^{-1} 1^{2} e^{y} dy = x^{2} | \begin{array}{c} 1 & -1 \\ + e^{y} | & = 1 \\ 0 & 0 \end{array} + (e^{-1} - 1) = e^{-1}$

Example: Since the force, **F**, in the previous example is conservative, it must be equal to the gradient of a potential function, φ . So next, let's find this potential function.

$$\mathbf{F} = \operatorname{grad} \boldsymbol{\varphi} = \partial \boldsymbol{\varphi} / \partial \mathbf{x} \, \mathbf{i} + \partial \boldsymbol{\varphi} / \partial \mathbf{y} \, \mathbf{j}$$

But $\mathbf{F} = 2\mathbf{x} e^{\mathbf{y}} \mathbf{i} + \mathbf{x}^2 e^{\mathbf{y}} \mathbf{j}$ so

 $\partial \phi / \partial x = 2x e^{y}$ and $\partial \phi / \partial y = x^{2} e^{y}$

Integrate $\partial \phi / \partial x$ with respect to x to obtain $\phi = x^2 e^y + f(y)$

Then take the derivative with respect to y to obtain $\partial \phi / \partial y = x^2 e^y + df(y)/dy$

Next equate this result to $\partial \phi / \partial y$ from above to obtain

$$x^2 e^y = x^2 e^y + df(y)/dy$$

Thus df/dy = 0 or f(y) = C = constant

Thus the potential function, $\varphi(x, y) = x^2 e^y + C$ (result)

Example: For the previous example use the gradient of the potential function that was

found to recalculate the line integral, $\int \mathbf{F} \cdot d\mathbf{r}$.

Recall the potential function was found to be $\varphi(\mathbf{x}, \mathbf{y}) = \mathbf{x}^2 e^{\mathbf{y}} + \mathbf{C}$ $\mathbf{F} = \operatorname{grad} \varphi = \partial \varphi / \partial \mathbf{x} \mathbf{i} + \partial \varphi / \partial \mathbf{y} \mathbf{j}$ So $\mathbf{F} \cdot d\mathbf{r} = \operatorname{grad} \varphi \cdot (d\mathbf{x} \mathbf{i} + d\mathbf{y} \mathbf{j}) =$ $[\partial \varphi / \partial \mathbf{x} \mathbf{i} + \partial \varphi / \partial \mathbf{y} \mathbf{j}] \cdot (d\mathbf{x} \mathbf{i} + d\mathbf{y} \mathbf{j}) = (\partial \varphi / \partial \mathbf{x}) d\mathbf{x} + (\partial \varphi / \partial \mathbf{y}) d\mathbf{y} = d\varphi$ So $\int \mathbf{F} \cdot d\mathbf{r} = \int d\varphi$. So the line integral becomes $\int d\varphi = \varphi |_{(1,-1)} - \varphi |_{(0,0)}$ where $\varphi |_{(0,0)} = \mathbf{C}$ Thus $\mathbf{I} = (1^2) (e^{-1}) + \mathbf{C} - \mathbf{C} = e^{-1}$ (Same result as before for line integral!)