Line Integrals

In a Nut Shell: The definite integral you studied in integral calculus b
$\int f(x) d x$ can be thought of as an integral of $f(x)$ along the x-axis.
a
Similarly, an integral could be evaluated along a curve in a plane or a curve in space. Such integrals are called "line integrals".

Suppose $f(x, y, z)$ is a smooth curve in space defined by the parameter t as follows

$$
\mathrm{x}=\mathrm{x}(\mathrm{t}), \quad \mathrm{y}=\mathrm{y}(\mathrm{t}), \quad \mathrm{z}=\mathrm{z}(\mathrm{t})
$$

Now by the Pythagorean theorem $\quad \mathrm{ds}=\sqrt{ }\left[(\mathrm{dx})^{2}+(\mathrm{dy})^{2}+(\mathrm{dz})^{2}\right]$
where ds represents the differential (arc) length along the curve, s , in space.

So

$$
\begin{aligned}
& \quad \int_{a}^{b} f(x, y, z) d s=\int_{a}^{b} f(x, y, z)(d s / d t) d t=\text { line integral of }^{\text {f }}(x, y, z) \text { along } \\
& \text { the curve, } s \\
& \int_{a}^{b} f(x, y, z) \sqrt{\left[(d x / d t)^{2}+(d y / d t)^{2}+(d z / d t)^{2}\right] d t} \\
& a_{a}
\end{aligned}
$$

For functions in a plane the vector field is $\quad \mathbf{F}(\mathrm{x}, \mathrm{y})=\mathrm{P}(\mathrm{x}, \mathrm{y}) \mathbf{i}+\mathrm{Q}(\mathrm{x}, \mathrm{y}) \mathbf{j}$ and the vector element along the curve, C, in the plane is $\quad d \mathbf{r}=\mathrm{dx} \mathbf{i}+\mathrm{dy} \mathbf{j}$

In this case the dot product
$\mathbf{F}(\mathrm{x}, \mathrm{y}) \cdot \mathrm{d} \mathbf{r}$ yields the following line integral along C in the plane

$$
\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y
$$

The line integral can also be expressed in terms of each coordinate variable ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Suppose $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a vector field defined as

$$
\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathbf{i}+\mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathbf{j}+\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathbf{k}
$$

where $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, and $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ are continuous functions of x, y, and z and $d \boldsymbol{r}$ is a vector element of length along the curve C in space
here $\mathrm{d} \mathbf{r}=\mathrm{dx} \mathbf{i}+\mathrm{dy} \mathbf{j}+\mathrm{dz} \mathbf{k} \quad$ Then the dot product

$$
\begin{aligned}
& \text { F(x,y,z) dr yields the following line integral along the curve } C \text { in space } \\
& \int_{C} P(x, y, z) d x+\int_{C} Q(x, y, z) d y+\int_{C} R(x, y, z) d z
\end{aligned}
$$

Both dot products discussed here $\mathbf{F}(\mathrm{x}, \mathrm{y}) \cdot \mathrm{d} \mathbf{r}(\mathrm{x}, \mathrm{y})$ and $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \cdot \mathrm{d} \mathbf{r}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
appear in engineering as the incremental work of the "force" \mathbf{F} along the path, C. i.e.

Suppose \mathbf{F} is a force acting on a particle in the $\mathrm{x}-\mathrm{y}$ plane and \mathbf{r} is the position vector from the origin to the particle.

Let the particle move an amount ds along the curve, C , in the $\mathrm{x}-\mathrm{y}$ plane under the influence of the force \mathbf{F}. The change in the position vector along the curve (tangent to C) is dr. Then the incremental work, dW, done on the particle by the force \mathbf{F} is the dot product of \mathbf{F} and $\mathrm{d} \mathbf{r}$. Thus the line integral along \mathbf{C} gives the work, W, done by the force \mathbf{F} acting on the particle as it moves along C.
$\mathrm{W}=\int \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\int \mathbf{F} \cdot(\mathrm{d} \mathbf{r} / \mathrm{dt}) \mathrm{dt}$ and $\mathrm{d} \mathbf{r}=\mathbf{T} \mathrm{ds}, \mathbf{T}$ is the unit tangential vector to the curve, C C

It is possible that the line integral of the function, \mathbf{F}, is independent of the curve (path), \mathbf{C}, in the $x-y$ plane. This situation occurs when the force, \mathbf{F},

$$
\mathbf{F}=\mathrm{P}(\mathrm{x}, \mathrm{y}) \mathbf{i}+\mathrm{Q}(\mathrm{x}, \mathrm{y}) \mathbf{j}
$$

is conservative In such a case, the curl of \mathbf{F} must be zero.
curl of $\mathbf{F}=\partial \mathbf{Q} / \partial \mathrm{x}-\partial \mathrm{P} / \partial \mathrm{y}=0$ if the force is conservative
So

$$
\partial \mathrm{P} / \partial \mathrm{y}=\partial \mathrm{Q} / \partial \mathrm{x}
$$

And the (vector field) force, \mathbf{F}, can be expressed in terms of the gradient of a potential function (scalar function, φ)

$$
\varphi(x, y) \text {. i.e. }
$$

$$
\mathbf{F}=\operatorname{grad}(\varphi)
$$

Suppose you were to evaluate the line integral

$$
\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y
$$

where the path (curve) C is somewhat complicated. Then you might first check to see if the "force" (vector field) is conservative.

$$
\mathbf{F}=\mathrm{P}(\mathrm{x}, \mathrm{y}) \mathbf{i}+\mathrm{Q}(\mathrm{x}, \mathrm{y}) \mathbf{j}
$$

i.e. Does $\partial \mathrm{P} / \partial \mathrm{y}=\partial \mathrm{Q} / \partial \mathrm{x}$? If so, the force, \mathbf{F}, is conservative.

Then the line integral, $\int \mathbf{F} \cdot \mathrm{d} \mathbf{r}$, is independent of its path and you can simplify the C
calculation by selecting an easier path.

Example: Evaluate the line integral for $P(x, y)=y^{2}$ and $Q(x, y)=x$ along the curve, C, given by $\mathrm{x}=\mathrm{y}^{3}$ from $(-1,-1)$ to $(1,1)$.

$$
I=\int_{C} y^{2} d x+\int_{C}^{x d y} \quad \text { For the given curve, } C, d x=3 y^{2} d y
$$

So the line integral becomes $I=\int_{-1}^{1} y^{2} 3 y^{2} d y+\int_{-1}^{1} y^{3} d y$
1
$\left.\mathrm{I}=(3 / 5) \mathrm{y}^{5}+\left.(1 / 4) \mathrm{y}^{4}\right|_{-1}=[(3 / 5)+)\right]-[-(3 / 5)+(1 / 4)]=6 / 5$

Example: Evaluate the line integral $\left.\mathrm{I}=\int_{\mathrm{C}}^{\mathrm{f}} \mathrm{f}, \mathrm{y}, \mathrm{z}\right)$ ds for $0 \leq \mathrm{t} \leq 1$ where
$f(x, y, z)=2 x+9 x y \quad$ along the curve, C, \quad given by $x=t, y=t^{2}, z=t^{3}$
$\left.\left.I=\int f(x, y, z) d s=\int f(x, y, z)(d s / d t) d t, d s / d t=\sqrt{ }[d x / d t)^{2}+(d y / d t)^{2}+d z / d t\right)^{2}\right] d t$

$$
I=\int_{0}^{1}\left[2 t+9 t t^{2}\right] \sqrt{ }\left[1+(2 t)^{2}+\left(3 t^{2}\right)^{2}\right] d t=\int_{0}^{1}\left[2 t+9 t^{3}\right] \sqrt{ }\left[1+4 t^{2}+9 t^{4}\right] d t
$$

Let $\left.w=1+4 t^{2}+9 t^{4}\right]$, then $d w=4\left(2 t+9 t^{3}\right) d t$
or $\left(2 t+9 t^{3}\right) d t=(1 / 4) d w$ so the integral becomes

$$
\left.I=\int_{1}^{14}(1 / 4) w^{1 / 2} d w=(1 / 4)\left[(2 / 3) w^{3 / 2}\right)\right]\left.\right|_{1} ^{14}=(1 / 6)[14 \sqrt{ } 14-1]
$$

Example: Determine if the force, \mathbf{F}, is conservative where $\mathbf{F}=2 \mathrm{x} \mathrm{e}^{\mathrm{y}} \mathbf{i}+\mathrm{x}^{2} \mathrm{e}^{\mathrm{y}} \mathbf{j}$
$\mathbf{F}=\mathrm{P}(\mathrm{x}, \mathrm{y}) \mathrm{i}+\mathrm{Q}(\mathrm{x}, \mathrm{y}) \mathbf{j} \quad$ Now calculate $\partial \mathrm{P} / \partial \mathrm{y}$ and $\partial \mathrm{Q} / \partial \mathrm{x}$.

$$
\partial \mathrm{P} / \partial \mathrm{y}=2 \mathrm{xe}^{\mathrm{y}} \quad \text { and } \partial \mathrm{Q} / \partial \mathrm{x}=2 \mathrm{x}^{\mathrm{y}} \quad \text { Since } \partial \mathrm{P} / \partial \mathrm{y}=\partial \mathrm{Q} / \partial \mathrm{x} \quad \mathbf{F} \text { is conservative. }
$$

Next determine the value of the line integral
$I=\int 2 x e^{y} d x+x^{2} e^{y} d y \quad$ from $(0,0)$ to $(1,-1)$
Note: The value of the line integral should not depend on the path.
Pick an easy path as follows: Integrate along the x -axis from $\mathrm{x}=0$ to $\mathrm{x}=1 \quad(\mathrm{y}=0)$
Then integrate along the line $\mathrm{x}=1$ from $\mathrm{y}=0$ to $\mathrm{y}=-1$. With this path the integral simplifies to the following:
$I=\int_{0}^{1} 2 x e^{0} d x+\int_{0}^{-1} 1^{2} e^{y} d y=\left.x^{2}\right|_{0} ^{1}+e^{y} \mid{ }_{0}^{-1}=1+\left(e^{-1}-1\right)=e^{-1}$

Example: Since the force, \mathbf{F}, in the previous example is conservative, it must be equal to the gradient of a potential function, φ. So next, let's find this potential function.

$$
\mathbf{F}=\operatorname{grad} \varphi=\partial \varphi / \partial \mathrm{x} \mathbf{i}+\partial \varphi / \partial \mathrm{y} \mathbf{j}
$$

But $\quad \mathbf{F}=2 \mathrm{xe}^{y} \mathbf{i}+\mathrm{x}^{2} \mathrm{e}^{\mathrm{y}} \mathbf{j}$ so

$$
\partial \varphi / \partial \mathrm{x}=2 \mathrm{x} \mathrm{e}^{\mathrm{y}} \text { and } \partial \varphi / \partial \mathrm{y}=\mathrm{x}^{2} \mathrm{e}^{\mathrm{y}}
$$

Integrate $\partial \varphi / \partial \mathrm{x}$ with respect to x to obtain $\varphi=\mathrm{x}^{2} \mathrm{e}^{\mathrm{y}}+\mathrm{f}(\mathrm{y})$
Then take the derivative with respect to y to obtain $\partial \varphi / \partial y=x^{2} e^{y}+d f(y) / d y$
Next equate this result to $\partial \varphi / \partial \mathrm{y}$ from above to obtain

$$
x^{2} e^{y}=x^{2} e^{y}+d f(y) / d y
$$

Thus $\mathrm{df} / \mathrm{dy}=0$ or $\mathrm{f}(\mathrm{y})=\mathrm{C}=$ constant

Thus the potential function, $\varphi(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2} \mathrm{e}^{\mathrm{y}}+\mathrm{C}$
(result)

Example: For the previous example use the gradient of the potential function that was found to recalculate the line integral, $\int \mathbf{F} . \mathrm{d} \mathbf{r}$.

Recall the potential function was found to be $\quad \varphi(x, y)=x^{2} e^{y}+C$

$$
\mathbf{F}=\operatorname{grad} \varphi=\partial \varphi / \partial \mathrm{x} \mathbf{i}+\partial \varphi / \partial \mathrm{y} \mathbf{j}
$$

So $\quad \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\operatorname{grad} \varphi \cdot(\mathrm{dx} \mathbf{i}+\mathrm{dy} \mathbf{j})=$
$[\partial \varphi / \partial \mathrm{x} \mathbf{i}+\partial \varphi / \partial \mathrm{y} \mathbf{j}] \cdot(\mathrm{dx} \mathbf{i}+\mathrm{dy} \mathbf{j})=(\partial \varphi / \partial \mathrm{x}) \mathrm{dx}+(\partial \varphi / \partial \mathrm{y}) \mathrm{dy}=\mathrm{d} \varphi$
So $\int \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\int \mathrm{d} \varphi$.
So the line integral becomes $\int \mathrm{d} \varphi=\left.\varphi\right|_{(1,-1)}-\left.\varphi\right|_{(0,0)}$ where $\left.\quad \varphi\right|_{(0,0)}=\mathrm{C}$

Thus $I=\left(1^{2}\right)\left(\mathrm{e}^{-1}\right)+\mathrm{C}-\mathrm{C}=\mathrm{e}^{-1} \quad$ (Same result as before for line integral!)

