The Chain Rule for Functions of Several Variables

In a Nut Shell: Recall that the chain rule for a function, y, of one independent variable, x, was very important in that it enabled you to replace the derivative of a complicated function with a product of simpler derivatives, called the "chain" rule.

Recall the Chain Rule: If $u=u(x)$ and $x=x(t)$, then $d u / d t=[d u / d x][d x / d t]$
In a Nut Shell: The chain rule extends to functions of more than one independent variable.
Now consider a function, $\mathrm{w}(\mathrm{x}, \mathrm{y})$ (which has continuous, first-order derivatives) and that $\mathrm{x}=\mathrm{g}(\mathrm{t})$ and $\mathrm{y}=\mathrm{h}(\mathrm{t})$ are differentiable functions. Then w is a differentiable function of t.

Terminology:

w is the dependent variable, x and y are intermediate variables
and t is the independent variable
Suppose $w=w(x, y)$ has continuous first-order derivatives. Then

$$
\mathrm{dw} / \mathrm{dt}=[\partial \mathrm{w} / \partial \mathrm{x}] \mathrm{dx} / \mathrm{dt}+[\partial \mathrm{w} / \partial \mathrm{y}] \mathrm{dy} / \mathrm{dt} \quad \text { (chain rule) }
$$

It can be helpful to construct a "tree diagram" to illustrate the chain rule structure.

		w- dependent variable
		x, y - intermediate variables
		t - independent variable

Tree diagram for $\mathrm{w}=\mathrm{w}(\mathrm{x}, \mathrm{y})$ where $\mathrm{x}=\mathrm{x}(\mathrm{t})$ and $\mathrm{y}=\mathrm{y}(\mathrm{t})$.
It follows then that the chain rule for $\mathrm{dw} / \mathrm{dt}$ is given as above by the expression:

$$
d w / d t=[\partial w / \partial x] d x / d t+[\partial w / \partial y] d y / d t
$$

The concept of the tree diagram can be extended to many other cases. i.e. Consider the case where the dependent variable, w, has two intermediate variables, u and v, and two independent variables, x and y.

$$
\mathrm{w}=\mathrm{w}(\mathrm{u}, \mathrm{v}) \text { where } \mathrm{u}=\mathrm{u}(\mathrm{x}, \mathrm{y}), \mathrm{v}=\mathrm{v}(\mathrm{x}, \mathrm{y}) \quad \text { where }
$$

w is the dependent variable, u and v are intermediate variables,
and x and y are the independent variables

The tree structure for the dependent variable, w, is as follows :

So the two partial derivatives for $\mathrm{w}(\mathrm{x}, \mathrm{y})$ are as follows: (note "product" of partials)

$$
\partial \mathrm{w} / \partial \mathrm{x}=[\partial \mathrm{w} / \partial \mathrm{u}] \partial \mathrm{u} / \partial \mathrm{x}+[\partial \mathrm{w} / \partial \mathrm{v}] \partial \mathrm{v} / \partial \mathrm{x}
$$

and

$$
\partial \mathrm{w} / \partial \mathrm{y}=[\partial \mathrm{w} / \partial \mathrm{u}] \partial \mathrm{u} / \partial \mathrm{y}+[\partial \mathrm{w} / \partial \mathrm{v}] \partial \mathrm{v} / \partial \mathrm{y}
$$

Now consider the case where the dependent variable, w, has three intermediate variables and two independent variables.
$\mathrm{w}=\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ where $\mathrm{x}=\mathrm{x}(\mathrm{u}, \mathrm{v}), \mathrm{y}=\mathrm{y}(\mathrm{u}, \mathrm{v})$, and $\mathrm{z}=\mathrm{z}(\mathrm{u}, \mathrm{v})$
w is the dependent variable, x, y, and z are intermediate variables
and u and v are the independent variables (note "product" of partials)
So $\quad \partial \mathrm{w} / \partial \mathrm{u}=[\partial \mathrm{w} / \partial \mathrm{x}] \partial \mathrm{x} / \partial \mathrm{u}+[\partial \mathrm{w} / \partial \mathrm{y}] \partial \mathrm{y} / \partial \mathrm{u}+[\partial \mathrm{w} / \partial \mathrm{z}] \partial \mathrm{z} / \partial \mathrm{u}$
and $\partial \mathrm{w} / \partial \mathrm{v}=[\partial \mathrm{w} / \partial \mathrm{x}] \partial \mathrm{x} / \partial \mathrm{v}+[\partial \mathrm{w} / \partial \mathrm{y}] \partial \mathrm{y} / \partial \mathrm{v}+[\partial \mathrm{w} / \partial \mathrm{z}] \partial \mathrm{z} / \partial \mathrm{v}$

Example: Let $w=f(r)$ where $r=r(x, y, z)=\sqrt{ }\left[x^{2}+y^{2}+z^{2}\right]$
Here w is the dependent variable, r is the intermediate variable, and
x, y, and z are the independent variables

Show that $\quad \partial^{2} w / \partial x^{2}+\partial^{2} w / \partial y^{2}+\partial^{2} w / \partial z^{2}=d^{2} w / d r^{2}+[2 / r][d w / d r]$

The tree structure for this problem is as follows:

Start with the first derivative.
$\partial \mathrm{w} / \partial \mathrm{x}=[\mathrm{dw} / \mathrm{dr}][\partial \mathrm{r} / \partial \mathrm{x}]=\mathrm{dw} / \mathrm{dr}(1 / 2)\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]^{-1 / 2}[2 \mathrm{x}]$
So $\quad \partial w / \partial x=\left[x / \sqrt{ }\left[x^{2}+y^{2}+z^{2}\right] d w / d r=(x / r) d w / d r\right.$
Similarly, $\partial w / \partial y=[y / r] d w / d r$ and $\partial w / \partial z=[z / r] d w / d r$

Next find the second derivatives. This is the hard part of the calculation. The second derivative is just the derivative of the first derivative. Use the result for $\partial \mathrm{w} / \partial \mathrm{x}$.

$$
\partial^{2} \mathrm{w} / \partial \mathrm{x}^{2}=\partial / \partial \mathrm{x}[\partial \mathrm{w} / \partial \mathrm{x}]=\partial / \partial \mathrm{x}\{\mathrm{dw} / \mathrm{dr}[\partial \mathrm{r} / \partial \mathrm{x}]\}
$$

Next use the product rule to obtain

$$
\partial^{2} \mathrm{w} / \partial \mathrm{x}^{2}=\partial / \partial \mathrm{x}\{\mathrm{dw} / \mathrm{dr}\}[\partial \mathrm{r} / \partial \mathrm{x}]+\mathrm{dw} / \mathrm{dr} \partial / \partial \mathrm{x}\{\partial \mathrm{r} / \partial \mathrm{x}\}
$$

Next interchange the order of integration for the first term on rhs which gives

$$
\partial^{2} \mathrm{w} / \partial \mathrm{x}^{2}=\mathrm{d} / \mathrm{dr}\{\partial \mathrm{w} / \partial \mathrm{x}\}[\partial \mathrm{r} / \partial \mathrm{x}]+\mathrm{dw} / \mathrm{dr} \quad \partial / \partial \mathrm{x}\{\partial \mathrm{r} / \partial \mathrm{x}\}
$$

Now $\partial \mathrm{w} / \partial \mathrm{x}=[\mathrm{dw} / \mathrm{dr}][\partial \mathrm{r} / \partial \mathrm{x}]$
Perform the differentiations on the rhs (right hand side) gives
$\partial^{2} \mathrm{w} / \partial \mathrm{x}^{2}=\mathrm{d}^{2} \mathrm{w} / \mathrm{dr}^{2}[\partial \mathrm{r} / \partial \mathrm{x}]^{2}+\mathrm{dw} / \mathrm{dr}\left[\partial^{2} \mathrm{r} / \partial \mathrm{x}^{2}\right]$

Similar calculations and strategy occur for the second derivatives of w with respect
to y and to z .
From, $\left.\quad \partial^{2} w / \partial x^{2}=d^{2} w / d r^{2}[\partial r / \partial x]^{2}\right\}+d w / d r \quad\left\{\partial^{2} r / \partial x^{2}\right\}$
$\left.\partial^{2} w / \partial y^{2}=d^{2} w / d r^{2}[\partial r / \partial y]^{2}\right\}+d w / d r \quad\left\{\partial^{2} r / \partial y^{2}\right\}$
$\left.\partial^{2} \mathrm{w} / \partial \mathrm{z}^{2}=\mathrm{d}^{2} \mathrm{w} / \mathrm{dr}^{2}[\partial \mathrm{r} / \partial \mathrm{z}]^{2}\right\}+\mathrm{dw} / \mathrm{dr}\left\{\partial^{2} \mathrm{r} / \partial \mathrm{z}^{2}\right\}$

Recall $r=r(x, y, z)=\sqrt{ }\left[x^{2}+y^{2}+z^{2}\right]$

$$
\begin{array}{ll}
\partial \mathrm{r} / \partial \mathrm{x}=\mathrm{x} / \sqrt{ }\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]=\mathrm{x} / \mathrm{r} & \text { so }[\partial \mathrm{r} / \partial \mathrm{x}]^{2}=\mathrm{x}^{2} / \mathrm{r}^{2} \\
\partial \mathrm{r} / \partial \mathrm{y}=\mathrm{y} / \sqrt{ }\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]=\mathrm{y} / \mathrm{r} & \text { so }[\partial \mathrm{r} / \partial \mathrm{y}]^{2}=\mathrm{y}^{2} / \mathrm{r}^{2} \\
\partial \mathrm{r} / \partial \mathrm{z}=\mathrm{z} / \sqrt{ }\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]=\mathrm{z} / \mathrm{r} & \text { so }[\partial \mathrm{r} / \partial \mathrm{z}]^{2}=\mathrm{z}^{2} / \mathrm{r}^{2}
\end{array}
$$

Next find the second derivatives.

$$
\partial^{2} \mathrm{r} / \partial \mathrm{x}^{2}=1 / \sqrt{ }\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]-\mathrm{x}^{2} /\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]^{3 / 2}=1 / \mathrm{r}-\mathrm{x}^{2} / \mathrm{r}^{3}
$$

Similarly,

$$
\begin{aligned}
& \partial^{2} \mathrm{r} / \partial \mathrm{y}^{2}=1 / \sqrt{ }\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]-\mathrm{y}^{2} /\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]^{3 / 2}=1 / \mathrm{r}-\mathrm{y}^{2} / \mathrm{r}^{3} \\
& \partial^{2} \mathrm{r} / \partial \mathrm{z}^{2}=1 / \sqrt{ }\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]-\mathrm{z}^{2} /\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]^{3 / 2}=1 / \mathrm{r}-\mathrm{z}^{2} / \mathrm{r}^{3}
\end{aligned}
$$

Put these results for the first and second derivatives into $\partial^{2} w / \partial x^{2}, \partial^{2} w / \partial y^{2}$, and $\partial^{2} w / \partial z^{2}$

$$
\partial^{2} w / \partial x^{2}+\partial^{2} w / \partial y^{2}+\partial^{2} w / \partial z^{2}=d^{2} w / d r^{2}+\left\{\left[2\left(x^{2}+y^{2}+z^{2}\right) / r^{3}\right] d w / d r\right\}
$$

or $\partial^{2} w / \partial x^{2}+\partial^{2} w / \partial y^{2}+\partial^{2} w / \partial z^{2}=d^{2} w / d r^{2}+(2 / r) d w / d r \quad$ which is the result

