Lines and Planes in Space

In a Nut Shell: There are three types of lines in space. Those that are parallel, those that intersect, and those that are skew (neither parallel nor intersect). The equation of a line in space is found by vector addition.

Strategy: Let $\mathbf{r}=\langle\mathrm{x}, \mathrm{y}, \mathrm{z}\rangle$ be a vector from the origin, O , to an arbitrary point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on a line, L , in space. (Figure below) Let $\mathbf{r}_{\mathrm{o}}=\left\langle\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}, \mathrm{z}_{\mathrm{o}}\right\rangle$ be a vector from the origin to the point $\mathrm{P}_{\mathrm{o}}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}, \mathrm{z}_{\mathrm{o}}\right)$ on the same line, L . Let \mathbf{V} be a vector < $\mathrm{a}, \mathrm{b}, \mathrm{c}>$ parallel to the line L . Let t be a constant parameter.

Now let $\mathrm{t} V$ be a vector along (or parallel to line L) such that

$$
\mathrm{t} \mathbf{V}=\mathrm{ta} \mathbf{i}+\mathrm{tb} \mathbf{j}+\mathrm{tc} \mathbf{k} \text { is the vector from } \mathbf{r}_{\mathbf{0}} \text { to } \mathbf{r} .
$$

Then by vector addition: (Key step in determining the equation for the line)

$$
\mathbf{r}=\mathbf{r}_{\mathbf{0}}+\mathrm{t} \mathbf{V} \quad(\text { This is the equation of the line in vector form. })
$$

Equation of the line, L, in scalar form: $x=x_{0}+a t, \quad y=y_{o}+b t, \quad z=z_{o}+c t$ The equation of the line, L , in "symmetric" form is obtained from the scalar form by solving for t . The result is:

$$
\left[\mathrm{x}-\mathrm{x}_{0}\right] / \mathrm{a}=\left[\begin{array}{ll}
\mathrm{y} & \left.-\mathrm{y}_{0}\right] / \mathrm{b}=\left[\mathrm{z}-\mathrm{z}_{0}\right] / \mathrm{c}=\mathrm{t}
\end{array}\right.
$$

Example: Determine whether the two lines L_{1} and L_{2} are parallel.
$L_{1} \quad x=6+2 t, \quad y=5+2 t, \quad z=7+3 t$
$L_{2} \quad x=7+3 s, y=5+3 s, z=10+5 s$
Note the lines in "symmetric" form are:

$$
(x-6) / 2=(y-5) / 2=(z-7) / 3=t
$$

and $(x-7) / 3=(y-5) / 3=(z-10) / 5=s$
So, the vector parallel to line $L_{1} \quad$ is $\quad V_{1}=2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$
and the vector parallel to line $L_{2} \quad$ is $\quad V_{2}=3 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$
Since V_{1} is not a multiple of V_{2}, these vectors and the lines are not parallel. (result)

Next determine if the lines L_{1} and L_{2} skew or intersecting.

If the lines intersect, then they must have a common point at the point of intersection.
If that is not the case, then the lines are skew.
So assume that the two lines intersect. Then:

$$
\begin{array}{ll}
\mathrm{x}=6+2 \mathrm{t}=7+3 \mathrm{~s} & \text { eq (1) } \tag{1}\\
\mathrm{y}=5+2 \mathrm{t}=5+3 \mathrm{~s} & \text { eq (2) } \\
\mathrm{z}=7+3 \mathrm{t}=10+5 \mathrm{~s} & \text { eq (3) }
\end{array}
$$

Subtract (2) from (3). The result is: $2+\mathrm{t}=5+2 \mathrm{~s}$ or $\mathrm{t}=3+2 \mathrm{~s}$
So $2 \mathrm{t}=6+4 \mathrm{~s}$. Put this into (2) and solve for s .

$$
5+6+4 s=5+3 s, \quad \text { or } \quad s=-6
$$

Then put this result into $t=3+2 \mathrm{~s}$ which yields $\mathrm{t}=-9$
Now determine if these values of s and t satisfy eq (1).

$$
6+2(-9)=? 7+3(-6) \text { which does not hold! }
$$

So the lines L_{1} and L_{2} do not intersect. Therefore they are skew. (result)

PLANES

In a Nut Shell: The equation of a plane is found by taking the dot product of any line in the plane with its normal vector, \mathbf{n}. The result is that the dot product is zero since the normal vector is perpendicular to the arbitrary line in the plane.

Strategy: Let $\mathbf{r}=\langle\mathrm{x}, \mathrm{y}, \mathrm{z}\rangle$ be a vector from the origin, O , to an arbitrary point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in the plane. Let $\mathbf{r}_{0}=\left\langle\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right\rangle$ be a vector from the origin to the point $\operatorname{Po}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}, \mathrm{z}_{\mathrm{o}}\right)$ also in the plane. So the vector $\mathbf{r}-\mathbf{r}_{0}$ is a vector within the plane to be determined. Let $\langle\mathbf{i}, \mathbf{j}, \mathbf{k}\rangle$ be unit vectors along the x, y, and z axes.

The dot product of the vector $\mathbf{r}-\mathbf{r}_{\mathbf{o}}$ with the normal vector \mathbf{n} (\mathbf{n} is normal to every line in the plane) must equal zero since the vectors are perpendicular to each other.

$$
\left(\mathbf{r}-\mathbf{r}_{\mathbf{o}}\right) \cdot \mathbf{n}=0
$$

If $\mathbf{n}=\mathrm{a} \mathbf{i}+\mathrm{b} \mathbf{j}+\mathrm{c} \mathbf{k}$, then the equation of the plane has the following form:

$$
\left(x-x_{0}\right) a+\left(y-y_{o}\right) b+\left(z-z_{0}\right) c=0
$$

Note: The normal to a plane can be determined by taking the cross product of any two non-parallel lines (vectors) in the plane.

Further note: The angle between any two intersecting planes can be determined by finding the normal to each plane, say \mathbf{n}_{1} and \mathbf{n}_{2}, and then by finding the dot product of these two vectors. Let θ be the angle between \mathbf{n}_{1} and \mathbf{n}_{2}

$$
\cos \theta=\mathbf{n}_{1} \cdot \mathbf{n}_{2} /\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|
$$

Example: Determine the equation of the plane that passes through the origin, O, and contains the points $\mathrm{P}(1,1,1)$ and $\mathrm{Q}(1,-1,3)$.

Strategy: Determine the normal vector to the plane and form the dot product between this vector and an arbitrary vector in the plane.

Let $\mathbf{r}_{\mathrm{o}}=\mathbf{O P}$ be a vector from the origin to point P . So $\mathbf{O P}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
Let $\mathbf{O Q}$ be a vector from the origin to point P . So $\mathbf{O Q}=\mathbf{i}-\mathbf{j}+3 \mathbf{k}$
Since both vectors OP and OQ are vectors in the plane, the cross product yields the normal vector, \mathbf{n}.

$$
\begin{aligned}
& \mathbf{n}=\mathbf{O P} \times \mathbf{O Q} \quad(\text { vector cross product) } \\
& \mathbf{i} \\
& \mathbf{n}=\operatorname{j} \\
& \mathbf{n} \\
& 1
\end{aligned}
$$

Also let \mathbf{r} be a vector to an arbitrary point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in the plane.

$$
\text { So } \mathbf{r}=\mathrm{x} \mathbf{i}+\mathrm{y} \mathbf{j}+\mathrm{z} \mathbf{k}
$$

So $\quad \mathbf{r}-\mathbf{r}_{\mathrm{o}}=\mathbf{i}(\mathrm{x}-1)-\mathbf{j}(\mathrm{y}-1)+\mathbf{k}(\mathrm{z}-1)$
Note: $\quad \mathbf{r}-\mathbf{r}_{\mathrm{o}}$ is a vector in the desired plane.
and therefore, \mathbf{n} and $\mathbf{r}-\mathbf{r}_{o}$ are perpendicular to each other so the dot product is zero.

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathrm{o}}\right)=0=4(\mathrm{x}-1)-2(\mathrm{y}-1)-2(\mathrm{z}-1)
$$

or $2(x-1)-(y-1)-(z-1)=0$

$$
2 x-y-z=0 \quad \text { (result for equation of the plane) }
$$

