Area Calculations/Surface Area of Revolution

In a Nut Shell: Calculation of the area under a curve or between curves is a three step process using a vertical element of area. The process for one curve is given below.

- 1. Given $y_1 = f_1(x)$, $y_2 = f_2(x)$, and values of x, plot the curves in the xy-plane.
- 2. Identify the element of area, dA, and show it on the graph. A typical element is

$$dA = (y_u - y_L) dx$$
 or $dA = (x_R - x) dy$

3. Determine the limits of integration for the area to be calculated, $a \le x \le b$ or $c \le y \le d$ by setting $y_1(x) = y_2(x)$ or $x_1(y) = x_2(y)$ then evaluate the integral:

$$I = \int (y_u - y_L) dx \quad \text{or} \quad \int (x_R - x_L) dy$$

Example of one curve bounded by the x-axis and one or more vertical lines.

$$I = \int e^{-x} dx$$
 where $y(x) = e^{-x}$

Let the area be bounded below by the x-axis and on each side by [0,4]

Steps 1 and 2: Draw curve and show the element of area.

Here
$$dA = (y_u - y_L) dx$$
, $A = \int [y(x) - 0] dx$ or $A = \int [e^{-x} - 0] dx$

Step 3: Determine limits of integration. In this case the lower limit is x = 0 and the upper limit is x = 4.

Step 3: Evaluate the integral. **Note:** Area should always be positive value.

$$A = \int_{0}^{4} e^{-x} dx = -e^{-x} | = -[e^{-4} - 1] = 1 - e^{-4}$$

Revised Strategy where the area lies between two curves in the plane is described below.

- 1. Given $y_1 = f_1(x)$, $y_2 = f_2(x)$, and values of x, plot the curves in the xy-plane.
- 2. Identify the element of area, dA, and show it on the graph.

Typical elements $dA = (y_u - y_L) dx$ or $dA = (x_R - x_L) dy$

3. Determine the limits of integration $a \le x \le b$ or $c \le y \le d$ for the area to be calculated) by setting $y_1(x) = y_2(x)$ or $x_1(y) = x_2(y)$ then evaluate the integral:

$$I = \int_{a}^{b} (y_u - y_L) dx \quad \text{or} \quad \int_{c}^{d} (x_R - x_L) dy$$

Example: Find the area between the intersecting curves $y_1(x) = x$ and $y_2(x) = \frac{1}{2}x^2$

Steps 1 and 2: Draw curve and show the element of area.

$$dA = (y_{top} - y_{bottom}) dx$$

Step 3: Determine the limits of integration by finding the points of intersection of the curves $y_1(x)$ and $y_2(x)$. To do so set $y_1(x) = y_2(x)$ so $x = \frac{1}{2}x^2$ and x(1-0.5x) = 0 or x = 0 and x = 2 are the points of intersection.

Step 3: Evaluate the integral:

$$A = \int [x - \frac{1}{2} x^{2}] dx = [x^{2} - x^{3} / 6] = 2 - \frac{4}{3} = \frac{2}{3}$$

More complicated situations are when the area is between two curves and a vertical line or between two curves and a horizontal line. This will not be discussed.

One can also evaluate this same example using a horizontal element of area using the steps below.

- 1. Given $y_1 = f_1(x)$, $y_2 = f_2(x)$, and values of x, plot the curves in the xy-plane.
- 2. Identify the element of area, dA, and show it on the graph shown below.
- 3. For a horizontal strip: $dA = (x_R x_L) dy$

Determine the limits of integration $a \le x \le b$ or $c \le y \le d$ for the area to be calculated) by setting $y_1(x) = y_2(x)$ or $x_1(y) = x_2(y)$ then evaluate the integral:

$$I = \int_{a}^{b} (y_u - y_L) dx \quad \text{or} \quad \int_{c}^{d} (x_R - x_L) dy$$

Example: Find the area between the intersecting curves y(x) = x and $y(x) = \frac{1}{2}x^2$

Step 1: Draw curve and show the element of area. $dA = (x_R - x_L) dy$

Step 2: Determine the limits of integration by finding the points of intersection of the curves $y_1(x)$ and $y_2(x)$. To do so set x values equal: Here x = y and $x = \sqrt{2y}$. So $y = \sqrt{2y}$ or $y^2 = 2y$. So y = 0 and y = 2 are the points of intersection.

Step 3: Evaluate the integral

$$A = \int_{0}^{2} [\sqrt{2y} - y] dy = [\sqrt{2}(2/3)y^{3/2} - y^{2/2}] = [\sqrt{2}](2/3)8^{3/2} - 2] = 2/3$$

Applications can be extended to surface areas of revolution. In this application one or more curves may be revolved about either a horizontal axis or a vertical axis. They result is a surface area of revolution. Common examples include the surface areas of a cone, of a sphere, of a hemisphere, of a cylinder, or other applications.

In a Nut Shell: Calculation of surface area of revolution, A_s, is based on the Pythagorean Theorem. The calculation typically involves three steps as follows:

Step 1 Visualize a "small" (differential) element, ds, tangent to the curve, C, at an arbitrary location (x,y) as shown in the figure below. The length ds can be calculated using the Pythagorean theorem.

$$ds^2 = dx^2 + dy^2$$
 Thus $ds = \sqrt{(dx^2 + dy^2)}$

axis of revolution

Step 2 For y = y(x) Write ds using x as the independent variable.

$$ds = \left[\sqrt{1 + (dy/dx)^2}\right] dx$$

The element of surface area, $dA_s = 2 \pi r ds$, where r = d + y

Note: The element of area is just the circumference $(2 \pi r)$ times the length of ds.

Step 3 Determine the limits of integration in order to find the total arc length. i.e.

$$a \le x \le b$$
 as shown in the figure above

Perform the integration to find the total surface area of revolution. i.e.

$$A_s = 2 \pi \int (d+y) [\sqrt{1 + (dy/dx)^2}] dx$$

Other applications include Area Calculations extended to Surface Areas of Revolution

Example: Set up the integral (but do not evaluate) the surface area for the curve C given by $y = x^{1/2}$ revolved about the line y = -3 for $2 \le x \le 6$.

Step 1 Visualize a "small" (differential) element, ds, tangent to the curve, C, at an arbitrary location (x,y). The length ds can be calculated using the Pythagorean theorem.

$$ds^2 = dx^2 + dy^2$$
 Thus $ds = \sqrt{(dx^2 + dy^2)}$

y = -d axis of revolution

Step 2 For y = y(x) Write ds using x as the independent variable.

ds =
$$[\sqrt{1 + (dy/dx)^2}] dx$$
 here $dy/dx = \frac{1}{2} x^{-1/2}$

The element of surface area, $dA_s = 2 \pi r ds$, where $r = 3 + y = 3 + x^{1/2}$

Step 3 Determine the limits of integration in order to find the total arc length. i.e.

The domain of the function is: $2 \le x \le 6$

Perform the integration to find the total surface area of revolution. i.e.

$$A_s = 2 \pi \int_{2}^{6} (3 + x^{1/2}) \left[\sqrt{(1 + 1/4x)} \right] dx$$