Area Calculations/Surface Area of Revolution

In a Nut Shell: Calculation of the area under a curve or between curves is a three step process using a vertical element of area. The process for one curve is given below.

1. Given $y_{1}=f_{1}(x), y_{2}=f_{2}(x)$, and values of x, plot the curves in the $x y$-plane.
2. Identify the element of area, dA , and show it on the graph. A typical element is

$$
d A=\left(y_{u}-y_{L}\right) d x \quad \text { or } \quad d A=\left(x_{R}-x\right) d y
$$

3. Determine the limits of integration for the area to be calculated, $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ or $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$ by setting $\mathrm{y}_{1}(\mathrm{x})=\mathrm{y}_{2}(\mathrm{x})$ or $\mathrm{x}_{1}(\mathrm{y})=\mathrm{x}_{2}(\mathrm{y})$ then evaluate the integral:

$$
I=\int_{a}^{b}\left(y_{u}-y_{L}\right) d x \quad \text { or } \quad \int_{c}^{d}\left(x_{R}-x_{L}\right) d y
$$

Example of one curve bounded by the \mathbf{x}-axis and one or more vertical lines.
$I=\int e^{-x} d x \quad$ where $y(x)=e^{-x}$
Let the area be bounded below by the x -axis and on each side by $[0,4]$
Steps 1 and 2: Draw curve and show the element of area.

Here $d A=\left(y_{u}-y_{L}\right) d x, A=\int[y(x)-0] d x \quad$ or $\quad A=\int\left[e^{-x}-0\right] d x$
Step 3: Determine limits of integration. In this case the lower limit is $x=0$ and the upper limit is $\mathrm{x}=4$.

Step 3: Evaluate the integral. Note: Area should always be positive value.

$$
A=\int_{0}^{4} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{4}=-\left[e^{-4}-1\right]=1-e^{-4}
$$

Revised Strategy where the area lies between two curves in the plane is described below.

1. Given $y_{1}=f_{1}(x), y_{2}=f_{2}(x)$, and values of x, plot the curves in the $x y$-plane.
2. Identify the element of area, dA , and show it on the graph.

Typical elements $d A=\left(y_{u}-y_{L}\right) d x$ or $d A=\left(x_{R}-x_{L}\right) d y$
3. Determine the limits of integration $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ or $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$ for the area to be calculated) by setting $y_{1}(x)=y_{2}(x)$ or $x_{1}(y)=x_{2}(y)$ then evaluate the integral:

$$
I=\int_{a}^{b}\left(y_{u}-y_{L}\right) d x \quad \text { or } \quad \int_{c}^{d}\left(x_{R}-x_{L}\right) d y
$$

Example: Find the area between the intersecting curves $y_{1}(x)=x$ and $y_{2}(x)=1 / 2 x^{2}$
Steps 1 and 2: Draw curve and show the element of area.

$$
\mathrm{dA}=\left(\mathrm{y}_{\text {top }}-\mathrm{y}_{\text {botoom }}\right) \mathrm{dx}
$$

Step 3: Determine the limits of integration by finding the points of intersection of the curves $y_{1}(x)$ and $y_{2}(x)$. To do so set $y_{1}(x)=y_{2}(x)$ so $x=1 / 2 x^{2}$ and $\mathrm{x}(1-0.5 \mathrm{x})=0$ or $\mathrm{x}=0$ and $\mathrm{x}=2$ are the points of intersection.

Step 3: Evaluate the integral:

$$
A=\int_{0}^{2}\left[x-1 / 2 x^{2}\right] d x=\left[x^{2}-x^{3} / 6\right]=2-4 / 3=2 / 3
$$

More complicated situations are when the area is between two curves and a vertical line or between two curves and a horizontal line. This will not be discussed.

One can also evaluate this same example using a horizontal element of area using the steps below.

1. Given $y_{1}=f_{1}(x), y_{2}=f_{2}(x)$, and values of x, plot the curves in the $x y$-plane.
2. Identify the element of area, dA , and show it on the graph shown below.
3. For a horizontal strip: $d A=\left(x_{R}-x_{L}\right) d y$

Determine the limits of integration $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ or $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$ for the area to be calculated) by setting $y_{1}(x)=y_{2}(x)$ or $x_{1}(y)=x_{2}(y)$ then evaluate the integral:

$$
I=\int_{a}^{b}\left(y_{u}-y_{L}\right) d x \quad \text { or } \quad \int_{c}^{d}\left(x_{R}-x_{L}\right) d y
$$

Example: Find the area between the intersecting curves $y(x)=x$ and $y(x)=1 / 2 x^{2}$
Step 1: Draw curve and show the element of area. $\quad \mathrm{dA}=\left(\mathrm{x}_{\mathrm{R}}-\mathrm{x}_{\mathrm{L}}\right) \mathrm{dy}$

Step 2: Determine the limits of integration by finding the points of intersection of the curves $y_{1}(x)$ and $y_{2}(x)$. To do so set x values equal: Here $x=y$ and $x=\sqrt{ }(2 y)$ So $\mathrm{y}=\sqrt{ }(2 \mathrm{y})$ or $\mathrm{y}^{2}=2 \mathrm{y} \quad$ So $\mathrm{y}=0$ and $\mathrm{y}=2$ are the points of intersection.

Step 3: Evaluate the integral

$$
\left.\mathrm{A}=\int_{0}^{2}[\sqrt{ }(2 \mathrm{y})-\mathrm{y}] \mathrm{dy}=\left[\sqrt{ } 2(2 / 3) \mathrm{y}^{3 / 2}-\mathrm{y}^{2} / 2\right]=[\sqrt{2}](2 / 3) 8^{3 / 2}-2\right]=2 / 3
$$

Applications can be extended to surface areas of revolution. In this application one or more curves may be revolved about either a horizontal axis or a vertical axis. They result is a surface area of revolution. Common examples include the surface areas of a cone, of a sphere, of a hemisphere, of a cylinder, or other applications.

In a Nut Shell: Calculation of surface area of revolution, A_{s}, is based on the Pythagorean Theorem. The calculation typically involves three steps as follows:

Step 1 Visualize a "small" (differential) element, ds, tangent to the curve, C, at an arbitrary location (x, y) as shown in the figure below. The length ds can be calculated using the Pythagorean theorem.

$$
\mathrm{ds}^{2}=\mathrm{dx}^{2}+\mathrm{dy}^{2} \quad \text { Thus } \quad \mathrm{ds}=\sqrt{ }\left(\mathrm{dx}^{2}+\mathrm{dy}^{2}\right)
$$

axis of revolution

Step 2 For $\mathrm{y}=\mathrm{y}(\mathrm{x}) \quad$ Write \quad ds using x as the independent variable.

$$
\mathrm{ds}=\left[\sqrt{ } 1+(d y / d x)^{2}\right] d x
$$

The element of surface area, $\mathrm{dA}_{\mathrm{s}}=2 \pi \mathrm{rds}$, where $\mathrm{r}=\mathrm{d}+\mathrm{y}$
Note: The element of area is just the circumference ($2 \pi \mathrm{r}$) times the length of ds.

Step 3 Determine the limits of integration in order to find the total arc length. i.e.

$$
\mathrm{a} \leq \mathrm{x} \leq \mathrm{b} \quad \text { as shown in the figure above }
$$

Perform the integration to find the total surface area of revolution. i.e.

$$
A_{s}=2 \pi \int_{a}^{b}(d+y)\left[\sqrt{ } 1+(d y / d x)^{2}\right] d x
$$

Other applications include Area Calculations extended to Surface Areas of Revolution

Example: Set up the integral (but do not evaluate) the surface area for the curve C given by $\mathrm{y}=\mathrm{x}^{1 / 2}$ revolved about the line $\mathrm{y}=-3$ for $2 \leq \mathrm{x} \leq 6$.

Step 1 Visualize a "small" (differential) element, ds, tangent to the curve, C, at an arbitrary location (x,y). The length ds can be calculated using the Pythagorean theorem.

$$
\mathrm{ds}^{2}=\mathrm{dx} \mathrm{x}^{2}+\mathrm{dy} \mathrm{y}^{2} \quad \text { Thus } \quad \mathrm{ds}=\sqrt{ }\left(\mathrm{d} \mathrm{x}^{2}+\mathrm{dy} \mathrm{y}^{2}\right)
$$

Step 2 For $\mathrm{y}=\mathrm{y}(\mathrm{x})$ Write ds using x as the independent variable.

$$
d s=\left[\sqrt{ } 1+(d y / d x)^{2}\right] d x \quad \text { here } \quad d y / d x=1 / 2 x^{-1 / 2}
$$

The element of surface area, $\mathrm{dA}_{\mathrm{s}}=2 \pi \mathrm{rds}$, where $\mathrm{r}=3+\mathrm{y}=3+\mathrm{x}^{1 / 2}$

Step 3 Determine the limits of integration in order to find the total arc length. i.e.
The domain of the function is: $\quad 2 \leq \mathrm{x} \leq 6$
Perform the integration to find the total surface area of revolution. i.e.

$$
A_{s}=2 \pi \int_{2}^{6}\left(3+x^{1 / 2}\right)[\sqrt{ }(1+1 / 4 x)] d x
$$

