
 Mechanical Vibrations                 
 

In a Nut Shell:  Vibrations of a spring, mass, and damper mechanical system with an  

applied forcing function (forced vibration) is an important application involving second  

order, linear, ordinary  differential equations with constant coefficients.  If there is no  

forcing function, f(t), then the mechanical system is said to undergo a free vibration. 

 

 

Let x(t) be the displacement of the mechanical system (figure below) with mass m  

spring constant K (lb/ft, N/m), and with damping constant C (lb sec/ft or N sec/m). 

 

 

                    
 

 

 

 

For free, undamped vibration:    m d2x/dt2  +  k x  =  0   

 

For free, damped vibration:    m d2x/dt2  + C dx/dt  +  k x  =  0   

  

For forced, undamped vibration:    m d2x/dt2  +  k x  =  f(t)  

                                            

For forced, damped vibration:    m d2x/dt2  + C dx/dt  +  k x  =  f(t)  

 

where  m   =  mass of the system   (slugs  or  kg) 

           k     =  spring constant    (lb/ft or N/m) 

           C    =  damping constant   (lb sec /ft  or  N sec / m) 

           d2x/dt2   represents physically the acceleration of the mass  (magnitude) 

           dx/dt       represents physically the velocity of the mass  (magnitude) 

           x(t) =   displacement of the mass   (ft or m) 

           f(t)  =  applied forcing function  ( lb or N ) 

 

 

 

Natural frequency:    ω  =  √ (K/m)    rad/sec 

 

Critical damping:   Cc  =  2 √ (Km)    (lb sec/ft  or  N sec/m) 

 

             C   <    Cc    underdamped        C   >    Cc    overdamped 

 

Two initial conditions are needed to find the two constants of integration. 

 

                     x(0)  = xo   and   dx(0)/dt  =  vo              

 



 

Undamped, free vibration 

 

 

                     
 

 

 

 

The differential equation for undamped, free vibrations is: 

 

                                d2x/dt2  +  ωo
2  x  =  0         where   ωo

2  = K/m 

 

with initial conditions  x(0) = xo  and  dx(0)/dt = vo 

 

Response for free vibrations depends on the spring constant, the mass, and on 

 

the initial conditions.    i.e.  For a solution, as usual, assume  x(t)  =  ert . 

 

 

The solution can be written as:   (once you have found the roots for  r ) 

 

     x(t)  =  A cos ωot  +  B sin ωot       and   ωo = √ (k/m)  =  natural frequency  = rad/sec 

 

where  the constants of integration  A and B are determined from the initial conditions. 

 

 

Or the solution can be written as:         x(t)  =  D cos (ωot  ˗  α ) 

 

where  D  =  √ (  A2  +  B2 )    ωo = √ (k/m)  =  circular frequency  = rad/sec 

 

and  α  = the phase angle in radians 

 

 

The frequency of vibration,   ѵ  =  ωo / 2π  (cycles/sec or hertz)  . 

 

The period, T, is the time to complete once cycle .   T  =  2π /  ωo   seconds. 

 

 

 

Many mechanical systems experience friction which leads to damped vibrations 

 

of the system.  The amount of damping is a major factor on the response of 

 

damped mechanical systems. 

 



 

 

                   
 

 

 

The differential equation for free vibrations with damping is: 

 

                               d2x/dt2  +  (C/m) dx/dt  +  ωo
2  x  =  0     

 

with initial conditions  x(0) = xo  and  dx(0)/dt = vo 

 

As usual to obtain a solution assume an exponential of the form, x(t)  =  ert . 

 

 

The amount of damping is a major factor in the response of damped free vibrations 

 

of a mechanical system.  There are three possible conditions for damping including 

 

 underdamped, critically damped, and over-damped. 

 

Critical damping occurs when  C2  =  4 k m  or   C  =  2 √ km . 

 

 

The solution for the overdamped case can be written as: 

 

     x(t)  =  A exp (r1 t)  +  B exp (r2 t)   Here exp refers to the exponential 

 

 

The solution for the critically damped case can be written as: 

 

    x(t)  =  exp( ˗ (C/2m) [ A1  +  A2 t ] 

 

 

 

The solution for the  underdamped case, which is of most interest, can be written as: 

 

     x(t)  =   D [exp{( ˗ C/2M)}t] [ (A/D) cos ω1t  +  (B/d) sin ω1t  ] 

 

where  the constants of integration  A and B are determined from the initial conditions. 

 

where  D  =  √ (  A2  +  B2 )    ω1  =  [√ ( 4km ˗ C2 )] / 2m 

 

Here the amplitude of vibration  is  D exp( ˗ C/2M)  and dies out with time.  So you 

 

have an oscillating response with decreasing amplitude. 

 



 

Consider a spring mass system with mass, m = 1 kg.  When the mass is  

 

stretched 9 cm, the force generated in the spring is 100 N.  The mass is released 

 

from rest in the stretched position.  Find the amplitude and frequency of the  

 

resulting motion.   

 

 

                                 
 

 
 

 

The differential equation for free, undamped vibrations is: 

 

 

                                d2x/dt2  +  ωo
2  x  =  0   

 

 

with initial conditions  x(0) = 9/100 m  and  dx(0)/dt =0 
 

 

Assume  x(t) = ert  and put into the d.e. which yields  r2 + ωo
2  = 0 ,  and  r = ± i ωo    

 

  So                   x(t)  =  A cos ωot  +  B sin ωot        

 

and   ωo = √ (k/m)  =  natural frequency in  rad/sec 
 

 

 

Evaluate  A  and  B using the initial conditions. 

 

               dx/dt  =  ˗ A ωo sin ωo t  +  B ωo cos ωo t   

 

               dx/dt | x = 0  =  B ωo     Therefore  B  =   0. 

 

and                             x(0)  =  A  =  9/100 m    (result for the amplitude of vibration) 

 

              x(t)  =  (9/100) cos ωot   
 



 

The frequency of vibration,   ѵ  =  ωo / 2π  (cycles/sec or hertz)  . 

 

    ѵ  =  √ (K/m) / 2π  =  100/6π  cycles/second       (result for frequency) 
 

 

Example of Free Vibration with Damping 

 

Consider a spring mass damper system with mass, m = 1 kg and damping constant 

C =  4 Nsec/m.  When the mass is stretched 9 cm, the force generated in the spring is  

100 N.  The mass is released from rest in the stretched position.  Find the amplitude 

 and frequency of the resulting motion 

 

 

                   
 

 

 

The differential equation is:             d2x/dt2  +  (C/m) dx/dt  +  (k/m)  x  =  0     

 

with initial conditions                      x(0) = 9/100 m  and  dx(0)/dt = 0  m/sec  . 

 

 

Strategy:  The type of vibration depends on the amount of damping.  First compute 

the spring constant, k, and next the critical damping using  Cc  =  2 √ km .  Then assume  

an exponential solution  x  =  ert   and solve the characteristic equation for the roots of r. 

 

F = k(extension)          So  k =  100 / (9/100)  =  (1002)/9    N / m 

 

So  Cc  =  2 (100/3)  =  200 / 3 Nsec/m   Therefore   C  <  Cc 

 

and the system is underdamped.  (result)      C/Cc  =  C / 2√km  = 4/([2√(1002)/9] =  0.06 

 

 

Next assume an exponential solution ert and put into the differential equation. 

 

This substitution yields the characteristic equation.    r2  +  (C/m)r  +  k/m  =  0 

 

with roots    r  =  ˗ C/2m  ± √ [ (C/2m)2  ˗   k/m ]     

 

To facilitate the solution multiply and divide by Cc . 

  

So     r  =  ˗ C/2m  ± √ [ (C/Cc )2 4km/4m2 ˗   k/m ]   =  ˗ C/2m  ± √{ [ (C/Cc )2 ˗ 1]  k/m } 

 

         r  =   ˗ C/2m  ± √ ˗ [ 1 ˗ (C/Cc )2] k/m   =    ˗ C/2m  ±  i{ √ [ 1 ˗ C2 / 4km]  k/m} 

 



  

  Now   r  =    ˗ C/2m  ±  i √{ [ 1 ˗ C2 / 4km]  k/m} = ˗ C/2m  ±  i √{ [ 1 ˗ C2 / 4km]  ωo
2} 

 

So       r  =  ˗ C/2m  ±  i  ω1      where    ω1  =   √{ [ 1 ˗ C2 / 4km]  ωo   and   ωo
2 = k/m 

 

 The roots for  r  are:       r1  =  ˗ C/2m  +  i  ω1      and    r2  =  ˗ C/2m  ˗  i  ω1       

 

Recall that the general solution is  x(t)  =  A exp (r1t)  +  B exp (r2t) 

 

where A and B  are the constants of integration. 

 

So the general solution is: 

 

                 x(t)  =  exp [(˗ C/2m)t ]  [ A cos ω1 t  +  B sin ω1 t ] 

 

 
Note the "undamped" natural frequency ωo  =   100/3  rad/sec 

 

The "damped" natural frequency,    ω1  =   √{ [ 1 ˗ C2 / 4km]  ωo  

 

        ω1  =   {√ [1 ˗ 36/10000]} (100/3) rad/sec       Note:   ω1   slightly less than ωo   
 

 

The constants of integration, A and B, are determined from the initial conditions. 

 

For this example   x(0)  =  9/100 m  and  dx(0)/dt  =  0. 

 

dx/dt  =     ˗ (C/2m) exp [(˗ C/2m)t ]  [ A cos ω1 t  +  B sin ω1 t ]  + 

 

                     exp [(˗ C/2m)t ]  [ ˗ ω1 A sin ω1 t  + ω1  B cos ω1 t ] 

 

dx(0)/dt  =  0  =  ˗ (C/2m) A  +  ω1  B      So  B  =  (C/2m) A  / ω1  . 

 

and  x(0) =  9/100  =  A    So   B  = [ (4/2) (9/100) ] / {√ [1 ˗ 36/10000]} (100/3) 

 

    B  =  54 /  [√ 1 ˗ 36/10000 ] 10000 

 

 
Now        x(t)  =   D exp [(˗ C/2m)t ]  [ (A/D) cos ω1 t  +  (B/D) sin ω1 t ] 

 

where  D  =  √ ( A2  +  B2 ) 

 

So the maximum amplitude starts out with a value D and decays with time according 

to   exp [(˗ C/2m)t ]  . 

 

 

Example of mechanical vibration involving Resonance 

 

Consider the undamped mechanical system with m = 1, C = 0, K = 1 subjected 

 

                    to the forcing function, 10 cos t.  Let the initial conditions be x(0) = 0 and 

 

                    dx(0)/dt = 0.  The differential equation is then as shown below. 

 



  

                          
 

 

The differential equation of motion is:           x''   +     x  =  10 cos t                          (1) 

 

a.  Find the natural frequency of the system. 

b.  Find the particular solution of the differential equation. 

c.  Find the response of the system to the forcing function for the given initial conditions. 

 

The natural frequency =  √(K/m)  =  1 rad/sec.      (result) 

 

Note that the natural frequency is the same as the driving frequency of the forcing function. 

 

 

The complementary solution for  x'' +  x  =  0    is  xc(t)  = A cos t  +  B sin t 

 

For linearly independent particular solutions one cannot repeat sin t and  cos t. 

 

So the particular solution becomes   xp(t) = C t cos t  +  D t sin t    

 

  dxp(t)/dt  = C cos t  +  D sin t   ˗ C t sint t  +  D t cos t 

 

d2xp(t)/dt2  =  ˗ C sin t  +  D cos t   ˗ C sint t  +  D cos t  ˗ C t cos t  ˗  D t sin t 

 

  xp(t)       =                                                                        C t cos t  +  D t sin t      (add) 

 

10 cos t  =  ˗ 2 C sin t  +  2 D cos t 

 

Therefore    C = 0  and  D  =  5   and thus    xp(t)  =  5 t sin t          (result for b) 

 

 

The response of the mechanical system is the sum of the complementary solution plus  

the particular solution subjected to the initial conditions. 

 

     x(t)  =  xc(t)  +  xp(t),        x(t)  = A cos t  +  B sin t  +  5 t sin t 

     x(0)  =  0  =  A,     dx(0)/dt  =  0  =  B 

 

  dx/dt  =  B cos t  +  5  sin t  +  5 t cos t 

 

  So the response of the mechanical system to the forcing function is: 

 

          x(t)  =  5 t sin t     (result) 

 

Note:  The amplitude of response increases with time. 

                     



 

Conclusions: 

 

1.  Resonance occurs if the driving frequency of the forcing function matches that of 

     the system's natural frequency.  

 

2.  The amplitude of motion for an undamped mechanical system grows with time 

     when the frequency of the forcing function matches that of the natural frequency 

      of the system. 

 

3.  Start up of a mechanical system may result in a driving frequency that passes through 

     one of the natural frequencies of the mechanical system. 

 

4.  Not shown in this example is that damping limits the build-up of amplitude of  

     response in the forced motion of a mechanical system.  In this case "practical 

     resonance" results. 

 

 

Forced Vibration, no damping, case involving “Beats” 

 

In a Nut Shell:  Under the condition where the frequency, ωo, of the forcing function,   

F cos ωot, is close to the natural frequency of the mechanical system, ω = √(K/m), then 

a response in the nature of  "beats" occurs.  i.e. If two horns are not exactly tuned the 

same, then one hears a "beat", an audible variation in the amplitude  of the combined 

sound.  In an electrical system the variation of amplitude with time is termed, 

amplitude modulation. 

 

 

Let x(t) be the displacement of the mechanical system (figure below) with mass m  

spring constant K (lb/ft, N/m), and with damping constant C (lb sec/ft or N sec/m). 

 

 

                    
 

 

For forced, undamped vibration:    m d2x/dt2  +  k x  =  f(t)                                            

 

where  m   =  mass of the system   (slugs  or  kg) 

           k     =  spring constant    (lb/ft or N/m) 

           d2x/dt2   represents physically the acceleration of the mass  (magnitude) 

           dx/dt       represents physically the velocity of the mass  (magnitude) 

           x(t) =   displacement of the mass   (ft or m) 

           f(t)  =  applied forcing function  ( lb or N ) 

              F  =  amplitude of forcing function (lb or N) 

             ωo =  frequency of the forcing function (rad/sec) 

 



 

Natural frequency of mechanical system:    ω  =  √ (K/m)    rad/sec 

 

Two initial conditions are needed to find the two constants of integration. 

 

                     x(0)  = xo   and   dx(0)/dt  =  vo            

 

 

Example:   The mass - spring system shown below has a mass, m = 1kg, and a spring 

rate, K = 1 N/m.  The forcing function is  0.42 cos (1.1t)  N.  The initial conditions are: 

x(0) = 0  and  dx(0) /dt = 0. 

 

 

Let x(t) be the displacement of the mechanical system (figure below) with mass m  

spring constant K (lb/ft, N/m), and with damping constant C (lb sec/ft or N sec/m). 

 

 

                    
 

 

The d.e. of motion is:       d2x/dt2  +   x  =  0.42 cos (1.1t)                                           

 

Find:   a.  The natural frequency of the mechanical system. 

           b.  The particular solution, xP(t). 

           c.  The response of the mechanical system,  x(t). 

           d.  Show a plot of the response, x(t). 

 

 

Natural frequency of mechanical system:    ω  =  √ (K/m) = 1  rad/sec 

 

Note that the natural frequency is close to the driving frequency of 1.1 rad/sec. 

 

The characteristic equation for the homogeneous d.e.  is  r2  +  1  =  0 

 

So  xc(t)  =  A cos t  +  B  sin t 

 

For the particular solution assume     xP(t)  =  C cos (1.1t)  +  D  sin (1.1t) 

 

So   d2xP(t)/dt2  =  ˗ 1.21 C cos 1.1t  ˗ 1.21  D sin 1.1t 

 

and   d2xP(t)/dt2  +  xP(t)  =  ˗ 0.21 C cos (1.1t)  ˗ 0.21 D sin (1.1t)   =  0.42 cos (1.1t) 

 

Thus  C  =  ˗ 2   and   D  =  0 

 

The result for the particular solution is    xP(t)  =  ˗ 2 cos (1.1t) 

 



 

  The response is:       x(t)  =  xc(t)  +  xP(t) 

 

  x(t)  =  A cos t  +  B sin t  ˗ 2 cos 1.1t    and   dx(t) /dt  =  ˗ A sin t  +  B cos t  ˗ 2.2 sin 1.1t 

 

For initial conditions:    x(0) = 0  =  A ˗ 2,    So  A = 2,    dx(0)/dt = 0,    B = 0 

 

Thus the response of the mechanical system,  x(t),  is: 

 

                          x(t)  =  2 cos (t)  ˗ 2 cos (1.1t)                  (result) 

 

 

 

This result can also be expressed as a product of two sine functions using the trig identies: 

 

                                       cos(a+b)  =  cos a cos b ˗  sin a  sin b 

 

and                                  cos(a˗b)  =  cos a cos b  +  sin a  sin b 

 

where    a  + b  = ( 1.1t)     and   a ˗ b  =  (1t) 

 

So   a  =  1.05t   and   b  =  0.05t 

 

And     cos (1.1t)  =  cos (1.05t) cos (0.05t)  ˗  sin (1.05t)  sin (0.05t) 

 

           cos(1t)     =  cos (1.05t)  cos (0.05t)  +  sin (1.05t)  sin (0.05t) 

 

So     x(t)  =   2 [ cos (t) ˗ cos (1.1t) ]  =  4[ sin (1.05t) sin(0.05t)] 

 

 

 

                              
 

 

                                   

The "envelope" is governed by sin(0.05t) with a period of 40π seconds and shows the 

 

beats (or modulation).  The "High Frequency"vibration within the "envelope"  is governed  

 

by sin (1.05t) with a period of  1.9π seconds. 

 



 

In a Nut Shell:  Vibrations of a spring, mass, and damper mechanical system with an  

applied forcing function (forced vibration) is an important application involving second  

order, linear, ordinary  differential equations with constant coefficients.  The forcing 

function generally controls the response of the mechanical system since the free vibration 

with damping will diminish with time.  Practical resonance occurs when the frequency  

of the forcing function is near that of the undamped natural frequency, √ (K/m). 

 

 

Let x(t) be the displacement of the mechanical system (figure below) with mass m  

spring constant K (lb/ft, N/m), and with damping constant C (lb sec/ft or N sec/m). 

 

                    
 

 

For forced, undamped vibration:    m d2x/dt2  +  k x  =  f(t)  

                                            

For forced, damped vibration:    m d2x/dt2  + C dx/dt  +  k x  =  f(t)  

 

where  m   =  mass of the system   (slugs  or  kg) 

           k     =  spring constant    (lb/ft or N/m) 

           C    =  damping constant   (lb sec /ft  or  N sec / m) 

           d2x/dt2   represents physically the acceleration of the mass  (magnitude) 

           dx/dt       represents physically the velocity of the mass  (magnitude) 

           x(t) =   displacement of the mass   (ft or m) 

           f(t)  =  applied forcing function  ( lb or N ) 

              F  =  amplitude of forcing function (lb or N) 

             ωo =  frequency of the forcing function (rad/sec) 

 

 

Natural frequency of mechanical system:    ω  =  √ (K/m)    rad/sec 

 

Two initial conditions are needed to find the two constants of integration. 

 

                     x(0)  = xo   and   dx(0)/dt  =  vo           

 

 

 

Example:  Mechanical System with Damping  - - Practical Resonance 

 

                   Consider the damped mechanical system with m = 1, C = 4, K = 8 subjected 

 

                    to the forcing function, 8 √8cos √8 t.  Let the initial conditions be x(0) = 0 and 

 

                    dx(0)/dt = 0.  The differential equation is then as shown below. 

 



  

                          
 

 

The differential equation of motion is:           x''   + 4 x'  +  8 x  =  8√8 cos √8 t                  

 

a.  Find the natural frequency of the system. 

b.  Find the particular solution, xp(t) of the differential equation. 

c.  Find the response of the system to the forcing function for the given initial conditions. 

 

The natural frequency =  √(K/m)  =  √8  rad/sec.      (result) 

 

Note that the natural frequency is the same as the driving frequency of the forcing function. 

 

 

The complementary solution for  x'' +  4x' + 8x  =  0    from the characteristic equation 

 

           r2  +  4r  +  8  =  0    with roots    r =  ˗2  ± 4 i      is: 

 

     xc(t)  = exp(˗2t) [A cos 4t  +  B sin 4t]    Note:  This transient response diminishes with time 

 

leaving only the particular solution as the steady state response after a short period of time. 

 

So the particular solution becomes   xp(t) = C cos √8 t  +  D sin √8 t    

 

  dxp(t)/dt  =  ˗√8C sin √8t  + √8 D cos √8t   

 

d2xp(t)/dt2          =     ˗ 8C cos √8t    ˗  8D sin √8t  

 

 4 dxp(t)/dt     =     4√8 D cos √8t  ˗ 4√8C sin √8t   

 

  8 xp(t)         =      8 C cos √8 t   + 8 D sin √8 t    

 

  8√8 cos √8 t      =      4√8 D cos √8t  ˗ 4√8C sin √8t         So  C = 0 and D = 2        

 

      Result:         xp(t) =   2 sin √8 t    Steady state response after free vibration damps out. 

 

 


