Existence and Uniqueness of Solutions / Exact Differential Equations

In a Nut Shell: Not all first order differential equations have a solution nor a unique solution. The existence and uniqueness theorem provides the conditions for which the differential equation has a solution and whether it is unique.

Theorem for a general first order, ordinary differential equation of the form:

$$
d y / d x=f(y, x) \quad y(a)=b
$$

This differential equation has a solution as long as $f(y, x)$ is continuous in a neighborhood of $\mathrm{y}=\mathrm{b}, \mathrm{x}=\mathrm{a}$. This solution is unique provided $\partial \mathrm{f} / \partial \mathrm{y}$ is also continuous in the same neighborhood.

Note: The d.e. might be linear or nonlinear depending on $f(y, x)$.

Example: Determine the existence and uniqueness of the solution for the following d.e.

$$
x d y / d x=y \quad y(a)=b
$$

Rewrite the d.e. as $\quad d y / d x=y / x=f(x, y)$
So $\mathrm{f}(\mathrm{x}, \mathrm{y}=\mathrm{y} / \mathrm{x}$ is continuous near (a, b) provided $\mathrm{a} \neq 0$.
no solutions $(0,6)$

Results in figure above: Solution exists and is unique at $(4,4)$. No solutions at $(0,6)$. Infinitely many solutions passing through (0,0)

Example: Determine the existence and uniqueness of the solution for the
following d.e.

$$
x d y / d x=2 y \quad y(a)=b
$$

$$
\text { Rewrite the d.e. as } \quad d y / d x=2 y / x=f(x, y)
$$

So $f(x, y)=2 y / x$ is continuous near (a, b) provided $a \neq 0$.
Therefore a solution, $\mathrm{y}(\mathrm{x})$, exists provided $\mathrm{a} \neq 0$.
$\partial \mathrm{f} / \partial \mathrm{y}=2 / \mathrm{x}$ which is also continuous provided $\mathrm{a} \neq 0$. So a solution exists that is unique provided $\mathrm{a} \neq 0$.

Results in figure above: Solution exists and is unique at $(4,4)$. No solutions on $\mathrm{x}=0$. Infinitely many solutions passing through (0,0) (parabolas)

Note: The existence and uniqueness theorem gives required conditions that a solution exists and is unique. It fails to show that a solution does not exist. In fact it does in this example at $(0,0)$.

Solution of Exact Differential Equations

In a Nut Shell: A differential equation of the form $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$ is exact if $\partial \mathbf{M} / \partial y=\partial \mathbf{N} / \partial \mathrm{x}$. The strategy to solve an exact differential equation is to seek an implicit solution in the form of a level curve. i.e. $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{C}$. Envision a function (surface) described by $\mathrm{F}(\mathrm{x}, \mathrm{y})$. Then $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{C}$ is a level curve on the surface. An example of a level curve is an isocline on the surface of a hill.

Procedure: Recall the definition of a differential $\mathrm{dF}=(\partial \mathrm{F} / \partial \mathrm{x}) \mathrm{dx}+(\partial \mathrm{F} / \partial \mathrm{y}) \mathrm{dy}$. Set $M=(\partial F / \partial x)$ and $N=(\partial F / \partial y)$ and seek a solution for $F(x, y)$ given an initial condition $y\left(x_{0}\right)=y_{0}$. Note i.e. integration of ($\partial \mathrm{F} / \partial \mathrm{x}$) will yield a "constant of integration" $g(y)$. Then calculate $\partial \mathrm{F} / \partial \mathrm{y}$ and set it equal to the value of $\mathrm{N}(\mathrm{x}, \mathrm{y})$ to find the function $\mathrm{g}(\mathrm{y})$. Consider the example given below.

Example: Determine if the following differential equation is exact and if so, find its solution.

$$
d y / d x=-\left(1+y e^{x y}\right) /\left(2 y+x e^{x y}\right) \quad \text { with } y(0)=1
$$

Rewrite as $\left(1+\mathrm{ye}^{\mathrm{xy}}\right) \mathrm{dx}+\left(2 \mathrm{y}+\mathrm{xe} \mathrm{e}^{\mathrm{xy}}\right) \mathrm{dy}=0$ with the initial condition $\mathrm{y}(0)=1$
So $M=\left(1+y e^{x y}\right)$ and $N=\left(2 y+x e^{x y}\right)$

$$
\partial \mathbf{M} / \partial y=e^{x y}+x y e^{x y} \text { and } \partial N / \partial x=e^{x y}+x y e^{x y} \quad \text { So the differential equation is exact. }
$$

Now use the total differential $d F=(\partial F / \partial x) d x+(\partial F / \partial y) d y=0$ since $F(x, y)=C$
where $\partial \mathrm{F} / \partial \mathrm{x}=\mathrm{M}=\left(1+\mathrm{ye}^{\mathrm{xy}}\right)$ and $\quad \partial \mathrm{F} / \partial \mathrm{y}=\mathrm{N}=\left(2 \mathrm{y}+\mathrm{x} \mathrm{e}^{\mathrm{xy}}\right)$

$$
\partial \mathrm{F} / \partial \mathrm{x}=1+\mathrm{ye}^{\mathrm{xy}} \text { and } \quad \partial \mathrm{F} / \partial \mathrm{y}=2 \mathrm{y}+\mathrm{x} \mathrm{e}^{\mathrm{xy}}
$$

Integrate the expression for $\partial \mathrm{F} / \partial \mathrm{x}$ with respect to x keeping in mind that y will be a constant.

$$
\begin{aligned}
& F(x, y)=x+e^{x y}+g(y) \text { Next take the partial derivative with respect to } y \\
& \partial F / \partial y=x e^{x y}+d g / d y \text { and set it equal to } \partial F / \partial y=2 y+x e^{x y}
\end{aligned}
$$

So $\mathrm{dg} / \mathrm{dy}=2 \mathrm{y}$ and therefore $\mathrm{g}(\mathrm{y})=\mathrm{y}^{2}$
The result is $F(x, y)=x+e^{x y}+y^{2}=C$
Apply the initial condition $\mathrm{y}(0)=1 \quad$ Therefore $\mathrm{C}=1$
The solution of the exact differential equation is $\mathrm{x}+\mathrm{e}^{\mathrm{xy}}+\mathrm{y}^{2}=1 \quad$ (result)

Note: One could also start by integrating the expression for $\partial \mathrm{F} / \partial \mathrm{y}$ and follow a similar procedure giving the same final result.

