Initial Value, Boundary Value, and Eigenvalue Problems

In a Nut Shell: There are three important types of problems involving linear, second order, ordinary, homogeneous d.e.'s of the form

$$y'' + p(x)y' + q(x)y = 0$$

that frequently appear in a first course in differential equations. They include:

Initial Value Problems	
Boundary Value Problems	
Eigenvalue Problems.	

Strategy: Start by identifying the type of problem. Each type will be described followed by an example.

Type 1: An initial value problem has conditions: y(a) = A, y'(a) = B

You saw this type of problem in studying free vibrations of a mechanical system.

my'' + c y' + k y = 0 along with conditions:

 $y(0) = y_o$, $dy(0)/dt = v_o$ (initial displacement and initial speed of system)

where: m = mass, c = damping coefficient, and k = spring rate The strategy is to find the complementary solution subject to the initial conditions.

Example: Find the solution for the following **initial value problem**.

 $\frac{d^2y}{dx^2} + \frac{6dy}{dx} + \frac{13y}{dx} = 0$

y(0) = 0, y'(0) = 1 (initial values)

You can write this d.e. in operator notation $(D^2 + 6D + 13)y = 0$

Assume $y = Ae^{rx}$ for the complementary solution.

So $d^2y/dx^2 = A r^2 e^{rx}$, $dy/dx = A r e^{rx}$, and $y = A e^{rx}$

Substitute into the d.e. yields

$$Ae^{rx}(r^2 + 6r + 13) = 0$$

Since $Ae^{rx} \neq 0$, the characteristic equation for r becomes:

$$r^2 + 6r + 13 = 0,$$

with roots $-3 \pm 2i$ using the quadratic formula.

The complementary solution, y_c , is:

 $y_c(x) = Fe^{(-3+2i)x} + Ge^{(-3-2i)x}$

where F and G are undetermined constants (need two initial conditions)

which can be expressed as follows, (equivalent complementary solution)

 $y(x) = y_c(x) = e^{-3x} (C_1 \sin 2x + C_2 \cos 2x)$

Apply the initial values to find C_1 and C_2 . y(0) = 0 gives $0 = C_2$

So $y'(x) = -3 e^{-3x} (C_1 \sin 2x) + 2 e^{-3x} (C_1 \cos 2x)$

and $y'(0) = 1 = 2 C_1$ so $C_1 = 1/2$

The resulting solution for the initial value problem is $y(x) = (1/2) e^{-3x} \sin (2x)$

Type 2: A Boundary Value problem has conditions: y(a) = A, y(b) = B

Note: The boundary value problem also goes under the name of an end point problem.

Other possible boundary value conditions (or endpoint conditions) include:

y'(a) = A, y(b) = B, or y'(a) = A, y'(b) = B, or any linear combination

The procedure for solution is to find the complementary solution subject to the end conditions.

Example: Find the solution for the following **boundary value problem**.

 $\frac{d^2y}{dx^2} + 6 \frac{dy}{dx} + 13 y = 0$

y(0) = 0, $y'(\pi) = 1$ (boundary values)

You can write this d.e. in operator notation $(D^2 + 6D + 13)y = 0$

Assume $y = Ae^{rx}$ for the complementary solution.

So $d^2y/dx^2 = A r^2 e^{rx}$, $dy/dx = A r e^{rx}$, and $y = A e^{rx}$

Substitute into the d.e. yields: Ae^{rx} ($r^2 + 6r + 13$) = 0

Since $Ae^{rx} \neq 0$, the characteristic equation for r becomes:

 $r^2 + 6r + 13 = 0$,

with roots $-3 \pm 2i$ using the quadratic formula.

The complementary solution, y_c , is:

 $y_c(x) = Fe^{(-3+2i)x} + Ge^{(-3-2i)x}$

where F and G are undetermined constants (need two initial conditions)

which can be expressed as follows, (equivalent complementary solution)

 $y(x) = y_c(x) = e^{-3x} (C_1 \sin 2x + C_2 \cos 2x)$

Apply the initial values to find C_1 and C_2 . y(0) = 0 gives $0 = C_2$

So $y'(x) = -3 e^{-3x} (C_1 \sin 2x) + 2 e^{-3x} (C_1 \cos 2x)$

and $y'(0) = 1 = 2 C_1$ so $C_1 = 1/2$

The resulting solution for the initial value problem is $y(x) = (1/2) e^{-3x} \sin (2x)$

In a Nut Shell: An eigenvalue problem is special type of boundary value problem (endpoint problem) with an unknown parameter, λ , where the differential equation has the following form along with the associated boundary conditions:

Type 3: An eigenvalue problem

 $y'' + p(x) y' + \lambda q(x) y = 0$

y(a) = A, y(b) = B

where λ is a parameter, the eigenvalues, yet to be determined.

(The goal is to find values of λ that yield nontrivial solutions of the d.e.)

Example: Solve the following eigenvalue problem for eigenvalues and eigenvectors.

 $y'' + \lambda y = 0$ $y(0) = 0, \quad y(L) = 0$ here L > 0

Note: There are three possibilities for the unknown eigenvalues, λ . For example

 λ could be zero, negative, or positive. One must consider each case.

Case 1: $\lambda = 0$, Therefore y = Ax + B

y(0) = 0 = B, y(L) = 0 = AL, Therefore A = 0

so y(x) = 0 (a trivial solution). There are no eigenvalues (λ) or eigenfunctions.

Case 2: $\lambda = -\alpha^2$ The d.e. becomes $y'' - \alpha^2 y = 0$; $r^2 = \alpha^2$ So $y(x) = A \cosh \alpha x + B \sinh \alpha x$ y(0) = 0 = A, $y(L) = 0 = B \sinh \alpha L$ Either B = 0 or $\sinh \alpha L$ But $\sinh \alpha L \neq 0$, So B must be zero. Again the solution remains as the trivial solution y(x) = 0 (No eigenvalues) **Case 3:** $\lambda = \alpha^2$ $y'' + \alpha^2 y = 0$ so $r^2 = -\alpha^2$ y(0) = 0, y(L) = 0 here L > 0 $y(x) = A \sin \alpha x + B \cos \alpha x$ y(0) = 0 = B, and $y(L) = 0 = A \sin \alpha L$ Therefore either A = 0 or $\sin \alpha L = 0$ But for a nontrivial solution $(y(x) \neq 0)$, $A \neq 0$ So $\sin \alpha L = 0$, which holds for: $\alpha L = n\pi$, n = 1, 2, 3, ...Therefore the eigenvalues are: $\lambda_n = \alpha^2 = (n \pi/L)^2$ And the associated eigenfunctions are: $y_n = \sin(n\pi x/L)$

Example: Solve the following eigenvalue problem for eigenvalues and eigenvectors.

 $y'' + \lambda y = 0$ where 0 < x < Ly(0) = 0h y(L) + y'(L) = 0 where h > 0

Note: There are three possibilities for the unknown eigenvalues, λ . For example λ could be zero, negative, or positive. One must consider each case.

Case 1: $\lambda = 0$, Therefore y = Ax + B y(0) = 0 = B, y'(L) = A h y(L) + y'(L) = 0 = h AL + A = A(hL + 1)Since $hL + 1 \neq 0$, A = 0 and y(x) = 0

Therefore there are no eigenvalues or eigenfunctions for case 1.

Case 2: $\lambda = -\alpha^2$ The d.e. becomes $y'' - \alpha^2 y = 0$; $r^2 = \alpha^2$ So $y(x) = A \cosh \alpha x + B \sinh \alpha x$ y(0) = 0 = A and $y'(x) = \alpha B \cosh \alpha x$ $h y(L) + y'(L) = 0 = h B \sinh \alpha L + \alpha B \cosh \alpha L$ $B(h \sinh \alpha L + \alpha \cosh \alpha L) = 0$ So B ($\tanh \alpha L + \alpha / h$) = 0 And either B = 0 or $tanh \alpha L = -\alpha / h$ But $\tanh \alpha L \ge 0$ so B = 0 and y(x) = 0 (trivial solution) Therefore there are no eigenvalues nor eigenfunctions for case 2. **Case 3**: $\lambda = \alpha^2$ The d.e. becomes $y'' + \alpha^2 y = 0$; $r^2 = -\alpha^2$ So $y(x) = A \cos \alpha x + B \sin \alpha x$ With boundary conditions: $y(L) = B \sinh \alpha L$ y(0) = 0 = A and $y'(x) = \alpha B \cos \alpha x$ $h y(L) + y'(L) = 0 = h B \sin \alpha L + \alpha B \cos \alpha L$ $B(h \sin \alpha L + \alpha \cos \alpha L) = 0$ So B (tan α L + α / h) = 0 And either B = 0 or $\tan \alpha L = -\alpha / h = -\alpha L / hL$ For a nontrivial solution $B \neq 0$ so $\tan \alpha L = -\alpha L / hL$ Let $\beta = \alpha L$ so $\tan \beta_n = -\beta_n / hL$ $\alpha_n = \beta_n / L$ and $\lambda_n = \alpha_n^2 = (\beta_n / L)^2 = eigenvalues$ $y_n = sin (\beta_n x / L) = eigenfunctions$ Note: Eigenvalues are determined graphically by the intersection of $\tan \beta_n$ and $-\beta_n / hL$