
Initial Value, Boundary Value, and Eigenvalue Problems                         
 

In a Nut Shell:  There are three important types of problems involving linear,  

second order, ordinary, homogeneous d.e.’s of the form 

 

                                y’’ + p(x)y’ + q(x)y = 0 

 

 that frequently appear in a first course in differential equations.  They include: 

 

              Initial Value Problems 

             Boundary Value Problems   

             Eigenvalue  Problems.   

 

Strategy:  Start by identifying the type of problem.  Each type will be described followed 

by an example. 

 

 

Type 1:   An initial value problem has conditions:    y(a)  = A,  y’(a)  =  B 

 

You saw this type of problem in studying free vibrations of a mechanical system. 

 

       my’’  +  c y’  + k y  =  0    along with conditions: 

 

      y(0) = yo,  dy(0)/dt  =  vo   (initial displacement and initial speed of system) 

where:  m = mass,  c = damping coefficient, and  k  = spring rate 

The strategy is to find the complementary solution subject to the initial conditions. 

 

 

Example:  Find the solution for the following initial value problem. 

 

 

                        d2y/dx2  +  6dy/dx  +  13y  =  0   

 

                         y(0) = 0,   y’(0) = 1           (initial values) 

 

 

 

   You can write this d.e.  in operator notation  (D2  +  6D + 13) y   =   0  

 

 Assume   y = Aerx   for the complementary solution. 

 

So   d2y/dx2  =  A r2 erx ,   dy/dx  =  A r erx ,   and  y = Aerx 

 

Substitute into the d.e. yields 

 

                    Aerx ( r2  +  6r  +  13 )  =  0 

 

  Since  Aerx  ≠  0,  the characteristic equation for  r  becomes: 

 

                    r2  +  6r  +  13   =  0 ,    

 

with roots       -3 ± 2i        using the quadratic formula. 

 



 

The complementary solution,    yc ,  is: 

 

            yc (x)  =  Fe(-3 + 2i)x +  Ge(-3 - 2i)x 

 

where   F  and  G  are undetermined constants  (need two initial conditions) 

 

which can be expressed as follows,   (equivalent complementary solution) 

 

        y(x)  =   yc (x)  = e-3x ( C1 sin 2x+ C2 cos 2x )     

 

 

 Apply the initial values to find  C1 and C2.   y(0) = 0  gives  0  =  C2 

 

So   y’(x)  =  -3 e-3x ( C1 sin 2x )  + 2 e-3x ( C1 cos 2x ) 

 

and  y’(0)  =  1  =  2  C1      so    C1  =  1/2 

 

The resulting solution for the initial value problem is    y(x)  =  (1/2) e-3x sin (2x) 

 

 

Type 2:   A Boundary Value problem has conditions:    y(a)  = A,  y(b)  =  B 

 

Note:  The boundary value problem also goes under the name of an end point problem. 

 

Other possible boundary value conditions (or endpoint conditions) include: 

 

  y’(a) = A,  y(b) =  B,  or  y’(a)  =  A,  y’(b)  =  B,  or any linear combination 

 

The procedure for solution is to find the complementary solution subject to the 

end conditions. 

 

 

Example:  Find the solution for the following boundary value problem. 

 

                        d2y/dx2  +  6 dy/dx  +  13 y  =  0   

 

                         y(0) = 0,   y’(π) = 1           (boundary values) 

 

 

   You can write this d.e.  in operator notation  (D2  +  6D + 13) y   =   0  

 

 Assume   y = Aerx   for the complementary solution. 

 

So   d2y/dx2  =  A r2 erx ,   dy/dx  =  A r erx ,   and  y = Aerx 

 

Substitute into the d.e. yields:         Aerx ( r2  +  6r  +  13 )  =  0 

 

  Since  Aerx  ≠  0,  the characteristic equation for  r  becomes: 

  

                    r2  +  6r  +  13   =  0 ,    

 

with roots       -3 ± 2i        using the quadratic formula. 

 



 

The complementary solution,    yc ,  is: 

 

            yc (x)  =  Fe(-3 + 2i)x +  Ge(-3 - 2i)x 

 

where   F  and  G  are undetermined constants  (need two initial conditions) 

 

which can be expressed as follows,   (equivalent complementary solution) 

 

        y(x)  =   yc (x)  = e-3x ( C1 sin 2x+ C2 cos 2x )     

 

 

 Apply the initial values to find  C1 and C2.   y(0) = 0  gives  0  =  C2 

 

So   y’(x)  =  -3 e-3x ( C1 sin 2x )  + 2 e-3x ( C1 cos 2x ) 

 

and  y’(0)  =  1  =  2  C1      so    C1  =  1/2 

 

The resulting solution for the initial value problem is    y(x)  =  (1/2) e-3x sin (2x) 

 

 

In a Nut Shell:  An eigenvalue problem is special type of boundary value problem 

(endpoint problem) with an unknown parameter,   λ , where the differential equation  

has the following form along with the associated boundary conditions: 

 

Type 3:   An eigenvalue problem 

 

                  y ’’   +   p(x) y ’  +    λ q(x) y   =    0 

 

                  y(a)  =  A,    y(b)  =  B 

 

where    λ  is a parameter,  the eigenvalues,  yet to be determined. 

 

( The goal is to find values of  λ  that yield nontrivial solutions of the d.e. ) 

 

 

Example:  Solve the following eigenvalue problem for eigenvalues and eigenvectors. 

 

                             y’’  +  λ y   =   0   

 

                             y(0)   =   0,      y(L)   =   0              here   L   >   0 

 

Note:  There are three possibilities for the unknown eigenvalues, λ.  For example 

 

λ could be zero, negative, or positive.  One must consider each case. 

 

 

Case 1:     λ   =   0,     Therefore      y   =   Ax  +  B 

 

                         y(0)   =  0   =  B,    y(L)  =  0   =  AL,   Therefore   A  =  0 

 

so   y(x)  =  0   (a trivial solution).  There are no eigenvalues (λ) or eigenfunctions. 

 

 



 

 

Case 2:   λ  =  - α2       The  d.e.  becomes        y’’  - α2  y   =   0  ;      r2    =  α2 

 

So     y(x)  =  A cosh α x   +  B sinh α x 

 

                 y(0)   =   0  =   A,    y(L)   =  0   =  B sinh αL 

 

    Either   B  =  0   or sinh αL      But    sinh  αL  ≠   0,   So  B   must be zero. 

 

Again the solution remains as the trivial solution   y(x)  =  0  (No eigenvalues) 

 

 

Case 3:      λ  =   α2                y ’’  + α2 y   =   0         so    r2    =    -  α2                        

 

                             y(0)   =   0,      y(L)   =   0              here   L   >   0 

 

                             y(x)   =   A  sin αx   +   B cos αx 

 

                            y(0)   =   0   =   B,    and  y(L)   =   0    =   A  sin  αL 

 

                            Therefore either      A   =  0   or       sin  αL  = 0 

 

         But for a nontrivial solution ( y(x) ≠  0 ),   A  ≠  0 

 

         So   sin  αL   =   0 ,   which holds for:        αL   =   n π ,   n  =  1, 2, 3, . . . . 

 

        Therefore the eigenvalues are:   λn  =   α2       =   (n π/L )2 

 

         And the associated eigenfunctions are:     yn   =  sin (nπx/L)    

 

 

Example:  Solve the following eigenvalue problem for eigenvalues and eigenvectors. 

 

            y’’    +    λ  y   =    0               where    0    <   x    <   L 

 

            y(0)     =     0 

 

            h y(L)   +    y’(L)   =   0                where    h   >    0 

 

Note:  There are three possibilities for the unknown eigenvalues, λ.  For example 

λ could be zero, negative, or positive.  One must consider each case. 

 

 

Case 1:     λ   =   0,     Therefore      y   =   Ax  +  B 

 

                         y(0)   =  0   =  B,             y’(L)   =   A 

 

                            h y(L)   +    y’(L)   =   0      =  h AL  +  A   =   A(hL + 1) 

 

                       Since  hL  +  1  ≠   0,   A    =   0       and   y(x)   =   0 

 

        Therefore there are no eigenvalues or eigenfunctions for case 1. 

 



 

 

Case 2:   λ  =  - α2       The  d.e.  becomes        y’’  - α2  y   =   0  ;      r2    =  α2 

 

So     y(x)  =  A cosh α x   +  B sinh α x   

 

                 y(0)   =   0  =   A       and     y’(x)   =    α B  cosh α x    

 

            h y(L)   +    y’(L)   =   0    =   h B sinh α L    +   α B  cosh α L 

 

                             B(h sinh α L  +   α cosh α L)   =   0 

                             So     B (tanh α L + α / h )   =   0    

                 And either  B   =  0   or    tanh α L   =   - α / h 

              But   tanh α L    ≥  0        so   B   =   0    and   y(x)   =   0  (trivial solution) 

        Therefore there are no eigenvalues nor eigenfunctions for case  2. 

 

 

Case 3:   λ  =   α2       The  d.e.  becomes        y’’  + α2  y   =   0  ;      r2    =  ˗  α2 

 

                     So     y(x)  =  A cos α x   +  B sin α x   

 

            

With boundary conditions: 

  

             y(L)   =   B sinh α L   

 

                 y(0)   =   0  =   A       and     y’(x)   =    α B  cos α x    

 

            h y(L)   +    y’(L)   =   0    =   h B sin α L    +   α B  cos α L 

 

                             B(h sin α L  +   α cos α L)   =   0 

                             So     B (tan α L + α / h )   =   0    

                 And either  B   =  0   or    tan α L   =   - α / h   =    ˗  αL / hL    

 

For a nontrivial solution   B  ≠   0        so   tan α L   =    ˗  αL / hL    

 

 

                     Let     β   =   α L        so    tan   βn    =   - βn / hL    

          α n    =    βn / L     and   λn    =   α n
2    =   (βn / L)2     =   eigenvalues 

           yn    =   sin (βn  x / L)    =   eigenfunctions 

 

Note:                     Eigenvalues are determined graphically by the    

                              intersection of   tan βn   and   ˗  βn / hL    

 

 


