Initial Value, Boundary Value, and Eigenvalue Problems

In a Nut Shell: There are three important types of problems involving linear, second order, ordinary, homogeneous d.e.'s of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

that frequently appear in a first course in differential equations. They include:

Initial Value Problems
Boundary Value Problems
Eigenvalue Problems.

Strategy: Start by identifying the type of problem. Each type will be described followed by an example.

Type 1: An initial value problem has conditions: $y(a)=A, y^{\prime}(a)=B$
You saw this type of problem in studying free vibrations of a mechanical system.

$$
\begin{aligned}
& m y^{\prime \prime}+c y^{\prime}+k y=0 \quad \text { along with conditions: } \\
& y(0)=y_{0}, d y(0) / d t=v_{0} \quad \text { (initial displacement and initial speed of system) }
\end{aligned}
$$

where: $\mathrm{m}=$ mass, $\mathrm{c}=$ damping coefficient, and $\mathrm{k}=$ spring rate
The strategy is to find the complementary solution subject to the initial conditions.

Example: Find the solution for the following initial value problem.

$$
\begin{aligned}
& d^{2} y / d x^{2}+6 d y / d x+13 y=0 \\
& y(0)=0, \quad y^{\prime}(0)=1 \quad \text { (initial values) }
\end{aligned}
$$

You can write this d.e. in operator notation $\left(D^{2}+6 D+13\right) y=0$
Assume $y=A e^{r x}$ for the complementary solution.
So $d^{2} y / d x^{2}=A r^{2} e^{r x}, d y / d x=A r e^{r x}$, and $y=A e^{r x}$
Substitute into the d.e. yields

$$
\operatorname{Ae}^{\mathrm{rx}}\left(\mathrm{r}^{2}+6 \mathrm{r}+13\right)=0
$$

Since $A e^{\mathrm{rx}} \neq 0$, the characteristic equation for r becomes:

$$
r^{2}+6 r+13=0,
$$

with roots $-3 \pm 2 \mathrm{i} \quad$ using the quadratic formula.

The complementary solution, y_{c}, is:

$$
y_{c}(x)=\mathrm{Fe}^{(-3+2 i) x}+\mathrm{Ge}^{(-3-2 i) \mathrm{x}}
$$

where F and G are undetermined constants (need two initial conditions)
which can be expressed as follows, (equivalent complementary solution)

$$
y(x)=y_{c}(x)=e^{-3 x}\left(C_{1} \sin 2 x+C_{2} \cos 2 x\right)
$$

Apply the initial values to find C_{1} and $C_{2} . y(0)=0$ gives $0=C_{2}$
So $y^{\prime}(x)=-3 e^{-3 x}\left(C_{1} \sin 2 x\right)+2 e^{-3 x}\left(C_{1} \cos 2 x\right)$
and $y^{\prime}(0)=1=2 \mathrm{C}_{1} \quad$ so $\mathrm{C}_{1}=1 / 2$
The resulting solution for the initial value problem is $y(x)=(1 / 2) e^{-3 x} \sin (2 x)$

Type 2: A Boundary Value problem has conditions: $y(a)=A, y(b)=B$
Note: The boundary value problem also goes under the name of an end point problem.
Other possible boundary value conditions (or endpoint conditions) include:
$y^{\prime}(a)=A, y(b)=B$, or $y^{\prime}(a)=A, y^{\prime}(b)=B$, or any linear combination
The procedure for solution is to find the complementary solution subject to the end conditions.

Example: Find the solution for the following boundary value problem.

$$
\begin{aligned}
& d^{2} y / d x^{2}+6 d y / d x+13 y=0 \\
& y(0)=0, \quad y^{\prime}(\pi)=1 \quad \text { (boundary values) }
\end{aligned}
$$

You can write this d.e. in operator notation $\left(D^{2}+6 D+13\right) y=0$
Assume $y=A e^{r x}$ for the complementary solution.
So $d^{2} y / d x^{2}=A r^{2} e^{r x}$, dy/dx $=A r e^{r x}$, and $y=A e^{r x}$
Substitute into the d.e. yields: $\quad \operatorname{Ae}^{\mathrm{rx}}\left(\mathrm{r}^{2}+6 r+13\right)=0$
Since $\mathrm{Ae}^{\mathrm{rx}} \neq 0$, the characteristic equation for r becomes:

$$
r^{2}+6 r+13=0
$$

with roots $-3 \pm 2 \mathrm{i} \quad$ using the quadratic formula.

The complementary solution, y_{c}, is:

$$
y_{c}(x)=\mathrm{Fe}^{(-3+2 i) x}+\mathrm{Ge}^{(-3-2 i) \mathrm{x}}
$$

where F and G are undetermined constants (need two initial conditions)
which can be expressed as follows, (equivalent complementary solution)

$$
y(x)=y_{c}(x)=e^{-3 x}\left(C_{1} \sin 2 x+C_{2} \cos 2 x\right)
$$

Apply the initial values to find C_{1} and $\mathrm{C}_{2} . \mathrm{y}(0)=0$ gives $0=\mathrm{C}_{2}$
So $y^{\prime}(x)=-3 e^{-3 x}\left(C_{1} \sin 2 x\right)+2 e^{-3 x}\left(C_{1} \cos 2 x\right)$
and $y^{\prime}(0)=1=2 \mathrm{C}_{1} \quad$ so $\mathrm{C}_{1}=1 / 2$
The resulting solution for the initial value problem is $y(x)=(1 / 2) e^{-3 x} \sin (2 x)$

In a Nut Shell: An eigenvalue problem is special type of boundary value problem (endpoint problem) with an unknown parameter, λ, where the differential equation has the following form along with the associated boundary conditions:

Type 3: An eigenvalue problem

$$
\begin{aligned}
& y^{\prime \prime}+p(x) y^{\prime}+\lambda q(x) y=0 \\
& y(a)=A, y(b)=B
\end{aligned}
$$

where λ is a parameter, the eigenvalues, yet to be determined.
(The goal is to find values of λ that yield nontrivial solutions of the d.e.)

Example: Solve the following eigenvalue problem for eigenvalues and eigenvectors.

$$
\begin{aligned}
& \mathbf{y}{ }^{\prime \prime}+\lambda \mathbf{y}=\mathbf{0} \\
& \mathbf{y}(0)=\mathbf{0}, \quad \mathbf{y}(\mathbf{L})=\mathbf{0} \quad \text { here } \mathbf{L}>\mathbf{0}
\end{aligned}
$$

Note: There are three possibilities for the unknown eigenvalues, λ. For example
λ could be zero, negative, or positive. One must consider each case.

Case 1: $\lambda=0$, Therefore $\mathrm{y}=\mathrm{Ax}+\mathrm{B}$

$$
y(0)=0=B, \quad y(L)=0=A L \text {, Therefore } A=0
$$

so $\mathrm{y}(\mathrm{x})=0$ (a trivial solution). There are no eigenvalues (λ) or eigenfunctions.

Case 2: $\lambda=-\alpha^{2}$ The d.e. becomes $\quad y^{\prime \prime}-\alpha^{2} y=0 ; \quad r^{2}=\alpha^{2}$
So $y(x)=A \cosh \alpha x+B \sinh \alpha x$

$$
y(0)=0=A, \quad y(L)=0=B \sinh \alpha L
$$

Either $B=0$ or $\sinh \alpha \mathrm{L}$ But $\sinh \alpha \mathrm{L} \neq 0$, So B must be zero.
Again the solution remains as the trivial solution $\mathrm{y}(\mathrm{x})=0$ (No eigenvalues)

Case 3: $\lambda=\alpha^{2} \quad y^{\prime \prime}+\alpha^{2} y=0 \quad$ so $r^{2}=-\alpha^{2}$

$$
\begin{aligned}
& y(0)=0, \quad y(L)=0 \quad \text { here } L>0 \\
& y(x)=A \sin \alpha x+B \cos \alpha x \\
& y(0)=0=B, \quad \text { and } y(L)=0=A \sin \alpha L
\end{aligned}
$$

Therefore either $\mathrm{A}=0$ or $\sin \alpha \mathrm{L}=0$
But for a nontrivial solution $(y(x) \neq 0), \quad A \neq 0$
So $\sin \alpha \mathrm{L}=0$, which holds for: $\alpha \mathrm{L}=\mathrm{n} \pi, \mathrm{n}=1,2,3, \ldots$.
Therefore the eigenvalues are: $\lambda_{\mathrm{n}}=\alpha^{2}=(\mathrm{n} \pi / \mathrm{L})^{2}$
And the associated eigenfunctions are: $\quad \mathrm{y}_{\mathrm{n}}=\sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L})$

Example: Solve the following eigenvalue problem for eigenvalues and eigenvectors.

$$
\begin{aligned}
& \mathbf{y}^{\prime \prime}+\lambda \mathbf{y}=\mathbf{0} \quad \text { where } \mathbf{0}<\mathbf{x}<\mathbf{L} \\
& \mathbf{y}(0)=0 \\
& h \mathbf{y}(\mathrm{~L})+\mathbf{y}^{\prime}(\mathrm{L})=0 \quad \text { where } h>0
\end{aligned}
$$

Note: There are three possibilities for the unknown eigenvalues, λ. For example λ could be zero, negative, or positive. One must consider each case.

Case 1: $\quad \lambda=0, \quad$ Therefore $\mathrm{y}=\mathrm{Ax}+\mathrm{B}$

$$
\begin{aligned}
& y(0)=0=B, \quad y^{\prime}(L)=A \\
& h y(L)+y^{\prime}(L)=0=h A L+A=A(h L+1) \\
& \text { Since } h L+1 \neq 0, A=0 \quad \text { and } y(x)=0
\end{aligned}
$$

Therefore there are no eigenvalues or eigenfunctions for case 1.

Case 2: $\lambda=-\alpha^{2}$ The d.e. becomes $y^{\prime \prime}-\alpha^{2} y=0 ; \quad r^{2}=\alpha^{2}$
So $y(x)=A \cosh \alpha x+B \sinh \alpha x$

$$
\begin{aligned}
& y(0)=0=A \quad \text { and } \quad y^{\prime}(x)=\alpha B \cosh \alpha x \\
& h y(L)+y^{\prime}(\mathrm{L})=0=h B \sinh \alpha \mathrm{~L}+\alpha \mathrm{B} \cosh \alpha \mathrm{~L} \\
& \mathrm{~B}(\mathrm{~h} \sinh \alpha \mathrm{~L}+\alpha \cosh \alpha \mathrm{L})=0 \\
& \text { So } \quad \mathrm{B}(\tanh \alpha \mathrm{~L}+\alpha / \mathrm{h})=0 \\
& \text { And either } \mathrm{B}=0 \text { or } \tanh \alpha \mathrm{L}=-\alpha / \mathrm{h} \\
& \text { But } \tanh \alpha \mathrm{L} \geq 0 \quad \text { so } \mathrm{B}=0 \text { and } \mathrm{y}(\mathrm{x})=0 \text { (trivial solution) }
\end{aligned}
$$

Therefore there are no eigenvalues nor eigenfunctions for case 2 .

Case 3: $\lambda=\alpha^{2}$ The d.e. becomes $y^{\prime \prime}+\alpha^{2} y=0 ; \quad r^{2}=-\alpha^{2}$

$$
\text { So } y(x)=A \cos \alpha x+B \sin \alpha x
$$

With boundary conditions:

$$
\begin{aligned}
& y(L)=B \sinh \alpha L \\
& y(0)=0=A \quad \text { and } \quad y^{\prime}(x)=\alpha B \cos \alpha x \\
& h y(L)+y^{\prime}(L)=0=h B \sin \alpha L+\alpha B \cos \alpha L
\end{aligned}
$$

$$
\mathrm{B}(\mathrm{~h} \sin \alpha \mathrm{~L}+\alpha \cos \alpha \mathrm{L})=0
$$

$$
\text { So } \quad B(\tan \alpha L+\alpha / h)=0
$$

$$
\text { And either } B=0 \text { or } \tan \alpha L=-\alpha / h=-\alpha L / h L
$$

For a nontrivial solution $B \neq 0$ so $\tan \alpha L=-\alpha L / h L$

$$
\begin{aligned}
& \text { Let } \beta=\alpha \mathrm{L} \text { so } \tan \beta_{\mathrm{n}}=-\beta_{\mathrm{n}} / \mathrm{hL} \\
& \alpha_{\mathrm{n}}=\beta_{\mathrm{n}} / \mathrm{L} \text { and } \lambda_{\mathrm{n}}=\alpha_{\mathrm{n}}^{2}=\left(\beta_{\mathrm{n}} / \mathrm{L}\right)^{2}=\text { eigenvalues } \\
& \mathrm{y}_{\mathrm{n}}=\sin \left(\beta_{\mathrm{n}} \mathrm{x} / \mathrm{L}\right)=\text { eigenfunctions }
\end{aligned}
$$

Note:
Eigenvalues are determined graphically by the intersection of $\tan \beta_{\mathrm{n}}$ and $-\beta_{\mathrm{n}} / \mathrm{hL}$

