
Dirichlet Applications - Heat Conduction in a Plate                         
 

In a Nut Shell:  The governing equation for heat conduction in a plate is: 

 

 

                                       ∂u/∂t   =   k [∂2u/∂x2 + ∂2u/∂y2 ] -----------------------  (1) 

 

 

     where     u  =  u(x,y,t)  =  the temperature in the plate at any time t 

                    x,y  =  the location in the plate 

                    t  =  the time at which the temperature at x is u(x,y,t)   

    and          k  is the thermal diffusivity of the material 

 

 

The desired outcome is to predict the temperature distribution, u(x,y,t), in the plate  

as a function of time, t. 

 

  

For steady-state heat conduction,  ∂u/∂t  =  0.  So the steady-state temperature  

 

distribution in the plate is governed by Laplace’s equation: 

 

                                 ∂2u/∂x2 + ∂2u/∂y2  =  0    -------------------------------------- (2) 

 

Strategy:  Use the method of separation of variables to solve (2) subject to the  

boundary conditions. 

 

      

Consider a thin plate with dimensions   (a by b)  shown below.  The objective is to find 

 

the steady state temperature distribution given boundary conditions on each edge of 

 

the plate. 

 

              
 

 



      

A complicated case exists when each edge has a nonhomogeneous boundary 

condition.  i.e.   u(x,0) = f1(x),   u(x,b)  =  f2(x)    ( 0 < x <  a )   and 

                          u(0,y) = g1(y),  u(a,y) =   g2(y)    (0 <  y < b )   See the figure below. 

 

 

 

       
           

 

In each case the equation for steady state heat conduction is    uxx  +  uyy  =  0  .    

 

 

Strategy: Split the original problem into four problems each with one nonhomogeneous  

boundary condition as in the table below.    Then use separation of variables for each  

problem.  The sum of the four solutions is then the solution of the original problem. 

 

 

      

Prob 1:   u(0,y)  =  u(a,y)  =  0     u(x,b)  =  0,   u(x,0)  =  f1(x)    Solution:    u1(x,y) 

Prob 2:   u(0,y)  =  0,  u(a,y)  =  g2(y),   u(x,0)  =   u(x,b)  =  0    Solution:    u2(x,y) 

Prob 3:   u(0,y)  =  g1(y),  u(a,y)  =  0,   u(x,0)  =   u(x,b)  =  0    Solution:    u3(x,y) 

Prob 4:   u(x,0)  =  0,   u(x,b)  =  f2(x)     u(0,y)  =   u(a,y)  =  0   Solution:    u4(x,y) 

 

 

 

The general solution,  u(x,y),  for this complicated case is then: 

 

                  u(x,y)  =  u1(x,y)  +  u2(x,y)  +  u3(x,y)  +  u4(x,y) 

 
 

In a Nut Shell:  The typical heat conduction problem involves finding the steady-state 

 temperature distribution in the plate subject to specified  boundary conditions on each edge  

of the plate.  The various boundary conditions include: 

 



 

The edges of the plate have specified temperatures.  In that case: 

 

   u(0,y)  = f1(y),    u(a,y)  =  f2(y) =  prescribed temperature at  edges  x = 0 and x = a 

 

   u(x,0)  = h1(x),   u(x,b)  =  h2(x) =  prescribed temperature at  edges  y = 0 and y = b 

 
 

The edges of the plate might be insulated.  In that case: 

 

   ux(0,y)  =  0,   ux(a,y)  =  0   =  insulated edges at  x  =  0  and  x  =  a 

 

   uy(x,0)  =  0,   uy(x,b)  =  0   =  insulated edges at  y  =  0  and  y  =  b 

 
 

Note:  The actual boundary conditions might involve any combination of these b.c’s. 

However, you always need to have a total of four boundary conditions since the 

governing equation,  uxx  +  uyy  =   0, has second derivatives in both  x   and   y. 

 
 

The heat conduction equation involves two independent variables, x and y. 

Strategy:  Use  “separation of variables” to separate out the spatial variables, x  and  y. 

 

    Assume       u(x,y)  =  X(x) Y(y)    ------------------------------------------  (3) 

 

Put this expression into    uxx  +  uyy  =   0,  eq (2),  and take derivatives. 

 

                  X’’Y  +  XY’’   =  0  

 
 

Next, separate the variables.    (division by XY) 

 

                      ˗  X’’/X   =   Y’’/Y   =  separation constant   =  λ 

 

So                    X’’  +  λ X  =   0 

 

and                  Y’’  ˗   λ Y   =   0 

 

Note:  The separation constant, λ, can take on three possible cases --  such as   

                        λ  =  0,  λ  >  0,  and  λ  <  0 .  You need to evaluate each case. 

 
 

Example:  Solve for the steady state heat conduction in a plate (a by b) with edges  x  =  0   

and  x  =  a  insulated.  

 

Let the temperature along the edge,  y  =  0,  be  u(x, 0) = 0 and the temperature  

distribution along the edge, y  =  b,  is  u(x, b)  =  f(x).  See the figure below. 

 

So                            uxx  +  uyy  =  0                  (eq. 1) 

 

                         ux (0, y)  =  ux (a, y)  =   0 

 

                         u(x, 0)  =  0   and    u(x, b)  =  f(x) 

 



 

 

                       
 
 

 Strategy:  Separate the variables by assuming  u(x,y) = X(x)Y(y), by putting this expression 

  into eq. 1 above, and by dividing by XY. 

 
 

                      - X ’’/X   =   Y ’’/Y   =  separation constant   =  λ 

 

So                    X ’’  +  λ X  =   0 

 

and                  Y ’’  -  λ Y   =   0 

 

The separation constant, λ, can take on three possible cases --  such as   

λ  =  0,  λ  >  0,  and  λ  <  0 .  You need to evaluate each case. 

 
 

Next consider each case for the separation constant,  λ,  individually.  Recall that the 

 

three cases are:  λ  =  0,  λ  >  0,  and  λ  <  0. 

 
 

Note:   The boundary conditions at edges of the plate (x = 0 and x = a) are homogeneous. 

 

                                        X ’(0)  =  X ’(a)  =  0 

 

Strategy:  Determine the eigenvalues and related eigenfunctions for the eigenvalue problem 

with homogeneous boundary conditions.  

 

       

 

                  Start with the equation           ˗  X’’/X  =  λ. 

 

 

 



 

For Case 1:      λ  =  0               X ’’ = 0,   X(x)  =  Ax  +  B,    X  ’(x)  =  A 

 

    So     X ’(0)  =  0  =  A     and   therefore  X(x)  =  B,    X0(x)  =  1 

 

    The eigenvalue  λ0  =  0    and   the associated eigenfunction is  Xo(x)  =  1          

 
 

For Case 2:       λ   >  0    λ  = α2          X ’’  +  α2  X  =  0 

 

                                                 X(x)  =  A cos αx  +  B sin  αx 

 

                                                X ’(x)  =  - Aα sin αx  +  Bα cos  αx 

 

          X ’(0)  =  0  =   Bα,   since  α  ≠  0,   B  =  0 

   

         X ’(a)  =  0  =   - Aα sin aα   and  α  ≠  0   with  A  ≠  0   for a nontrivial solution 

 

        Thus    sin aα   =  0,   so   aα   =  nπ      n  =  1, 2, 3, . . . 

 

 

 The eigenvalues are  λn  = αn
2  =  (nπ/a)2    with eigenfunctions   Xn(x) = cos (nπx/a) 

 
 

For Case 3   λ   <  0    λ  =  ˗ α2        X’’  ˗   α2  X  =  0 

 

                                                 X(x)  =  A cosh αx  +  B sinh  αx 

 

                                                X’(x)  =  Aα sinh αx  +  Bα cosh  αx 

 

        X’(0)  =  0  =  Bα,   since   α  ≠  0 ,   B  =  0           and   X(x)  =  A cosh αx  

 

        X’(a)  =  0  =  Aα sinh aα   and since sinh aα and  α  ≠  0 ,   A  =  0 

 

           which yields the trivial solution for Case 3.   

 

Therefore there are no eigenvalues nor eigenvectors for this case. 

 
 

Next continue with the solution for  Yn(y) .    Strategy:  Use the eigenvalues already determined. 

 

For Case 1  λ   =  0         Y’’(y)  =  0 

 

                    Y(y)  =  A y  +  B   and  Y(0)  =  0  =  B 

 

                            So   for   λ0   =  0           Y0(y)  =  y  

 
 

Now for Case 2      λn  = αn
2   =  (nπ/a)2       Y’’(y)  -  (nπ/a)2 Y(y)  =   0 

 

with the general solution      Y(y)  =  A cosh (nπy/a)  +  B sinh(nπy/a) 

 

Now with  Y(0)  =  0   =   A,     Yn(y)  =  sinh(nπy/a) 

 



 

Result:   The set of eigenvalues and eigenfunctions for cases 1 and 2 are: 

 

     λ0  =  0,  X0  =  1,  Y0  =  y,         λn  =  (nπ/a)2,  Xn  = cos(nπx/a),  Yn  = sinh(nπy/a) 

 

 
 

Strategy:  Sum the "product" solutions:      u(x,y)  =  u0(x,y)  +  ∑ un(x,y) 

 

 

 where            u0(x, y)  =  X0 Y0     =   (1)(y)  =  y 

 

and                  un(x, y)  =  Xn Yn    =  cos(nπx/a) sinh(nπy/a) 

 

                                         ∞ 

So   u(x, y)   =    bo y   +  ∑  bn  sinh(nπy/a) cos(nπx/a) 

                                     n  =  1 

 

Next satisfy the temperature distribution, f(x), along y  =  b 

 

 

 

                                         ∞ 

So   u(x, y)   =    bo y   +  ∑  bn  sinh(nπy/a) cos(nπx/a)    -------------------  (1) 

                                     n  =  1 

 

 

 

 

The temperature distribution along  y = 0 is  u(x,b) = f(x). 

 

                                                      ∞ 

 So    u(x, b)  =  f(x)   =   bo b   +  ∑  bn sinh(nπb/a) cos(nπx/a)  ---------  (2) 

                                                    n  = 1 

 

 

 

Strategy:   Represent f(x) with a Fourier cosine series as follows: 

 

(Since the x-dependence of u(x, y) depends on cos(nπx/a)  ) 

 

                                              ∞ 

               f(x)   =    a0/2   +    ∑ an cos(nπx/a)    -------------------------------- (3) 

                                            n  = 1 

 

 

 

 

Strategy:  Determine  bo  and  bn  by comparing coefficients between  (2) and  (3). 

 

                       bo b   =  a0/2     and    bn sinh(nπb/a)  =  an 

 

                    So   bo  =  a0/2b    and   bn    =  an / sinh(nπb/a)   

 

 



 

 

Thus the solution for the steady state temperature distribution in the plate is: 

 

                                                ∞ 

            u(x, y)  =  a0 y/2b   +  ∑  an [sinh(nπy/a) / sinh(nπb/a] cos(nπx/a)    

                                             n  = 1 

  

where 

 

                         a                                                                 a 

       an   =  (2/a) ∫ f(x) cos(nπx/a)dx       and      a0   =  (2/a) ∫ f(x)dx 

                        0                                                                 0 

 

 

 

Heat Conduction in a Circular or Semi-Circular Plate 
 

 

In a Nut Shell:  The governing equation for heat conduction in a circular or 

semi-circular plate is: 

 

        ∂u/∂t   =   k [∂2u/∂r2 + (1/r) ∂u/∂r + (1/r2) ∂2u/∂θ2 ] -----------------------  (1) 

 

     where     u  =  u(r,θ,t)  =  the temperature in the plate at any time t 

                    r,θ  =  the location in the plate 

                    t  =  the time at which the temperature at x is u(r,θ,t)   

    and 

                     k  is the thermal diffusivity of the material 

 

When applied to a plate, the desired outcome is to predict the temperature  

distribution, u(r,θ,t), in the plate as a function of time. 

 

 

For steady-state heat conduction,  ∂u/∂t  =  0.  So the steady-state temperature  

 

distribution in the plate is governed by Laplace’s equation: 

 

 

                    ∂2u/∂r2 + (1/r) ∂u/∂r + (1/r2) ∂2u/∂θ2 =  0   ------------------------ (2) 

 

 

Use the method of separation of variables to solve (2) subject to the boundary conditions. 

 

 

      

 
Consider a thin semi-circular plate of radius   a  shown below.  The objective is to find 

 

the steady state temperature distribution given boundary conditions on the boundary of 

 

the plate. 

 

                      



     

 

 

                            
 
 

 

 

The typical heat conduction problem involves finding the steady-state temperature  

 

distribution in the semi-circular plate subject to specified  boundary conditions on  

 

each edge of the plate.  The various boundary conditions include: 

 

 

                    u(a,θ)  = f(θ),    u(r,0)  =   u(r,π)  =   0 

 

                    u(a,θ)  = f(θ),    uθ (r,0)  =   uθ (r,π)  =   0 

 

                    u(a,θ)  = f(θ),    u(r,0)  =   uθ (r,π)  =   0 

 

                    u(a,θ)  = f(θ),    uθ (r,0)  =   u(r,π)  =   0 

 

 

      here              u(a,θ)  =  f(θ)  is prescribed temperature on  r  =  a 

 

In addition the for continuity a finite temperature must exist at r = 0 for any θ . 

 

 

Since the heat conduction equation involves two independent variables, x and y, 

 

 “separation of variables” is needed to separate out the spatial variables, x  and  y. 

 

    Assume       u(r,θ)  =  R(r) θ(θ)    ------------------------------------------  (3) 

 

Put this expression into eq (2) and take derivatives. 

 

                  R’’θ  +   (1/r) R' θ  +  (1/r2)Rθ’’   =  0  

 



 

 

Next, separate the variables.    (division by XY) 

 

 

          ( r2 R''  +  rR' ) / R   =    ˗ θ '' / θ   =  separation constant   =  λ 

 

 

So                        r2 R''  +  rR'   ˗  λ R  =   0 

 

and                                   θ ’’  +  λ θ   =   0 

 

The separation constant, λ, can take on three possible cases --  such as   

 

λ  =  0,  λ  >  0,  and  λ  <  0 .  You need to evaluate each case. 

 

 

 

Example:  Consider steady state heat conduction in a semicircular plate of radius a shown  

 

below.  The temperature along the edge,  y  =  0,  u(x, 0) = 0 and the temperature distribution  

 

along the edge, y  =  b,  is  u(x, b)  =  f(x).  See the figure below. 

 
 

                           R’’θ  +   (1/r) R' θ  +  (1/r2)Rθ’’   =  0                           (1) 

 

                         u (r, 0)  =  u (r, π)  =   0 

 

                          u(a, θ)  =  f(θ)     (prescribed temperature distribution on r = a) 

 

 

 

 

                              
 

 

 



 
  Strategy:  Separate the variables by assuming  u(r,θ) = R(r) θ (θ), by putting this expression 

  into eq. 1 above.   The result is: 

 

          ( r2 R''  +  rR' ) / R   =    ˗ θ '' / θ   =  separation constant   =  λ 

 

So                        r2 R''  +  rR'   ˗  λ R  =   0 

 

and                                   θ ’’  +  λ θ   =   0 

 

The separation constant, λ, can take on three possible cases --  such as   

λ  =  0,  λ  >  0,  and  λ  <  0 .  You need to evaluate each case. 

 

Note that the boundary conditions are:             θ (0)  =  θ(π)  =  0 

 

Strategy:  Start with the eigenvalue problem:         θ ''  +  λ θ  =  0 

 

and examine the three possible cases for the eigenvalues of  λ as 

shown in the table below. 
 

 

Case 1:  λ  =  0         θ ''  =  0   or          θ ( θ )  =  A θ  +  B 

 

So   θ (  0 )  =   B     and  θ (π)  =  A π  =  0    So  A  =  0 

 

Result:  There are no eigenvalues for this case. 

 

 

Case 2:  λ  <  0       λ  =  ˗  α2   and  θ '' ˗  α2  θ  =  0 

 

         θ ( θ )  =  A cosh αθ  B  sinh αθ 

 

         θ ( 0 )  =  0  =   A   and           θ ( π )  =   0  =  B sinh απ 

 

Since  α ≠  0    and  sinh απ  ≠  0      Therefore 

 

                   B  =  0  and there are no eigenvalues for this case. 

 

 

Case 3:  λ  >  0       λ  =    α2   and  θ '' +  α2  θ  =  0 

                            
         θ ( θ )  =  A cos αθ  +  B  sin αθ 

 

              θ ( 0 )  =  A    and                 θ ( π )  =  0  =  B sin απ 

 

For a nontrivial solution  B ≠  0.   So   sin απ  =  0   and  αnπ  =  nπ     

 

Therefore   αn  =  n  and the eigenvalues for this case are     λn  =  n2 

 

with associated eigenfunctions     θn  =  sin nθ 

 
 

 



 
 

So                        r2 R''  +  rR'   ˗  n2 R  =   0 

 

Note that this differential equation has variable coefficients.  So assume 

 

                        R(r)  =  rK   and substitute into the differential equation . 

 

Note:  R '  =  k rK˗ 1   and   R ''  =  k(k ˗ 1) r rK˗ 2   

 

So                    [ k( k ˗ 1)  +  k  ˗  n2  ] rK  =  0        

 

Sine  rK  ≠  0              k2  ˗  n2  =  0    and    k  =  ±  n    which yields 

 

    R(r)  =  C rn  +  Dr ˗ n    and for a continuous solution at  r  =  0     D must be zero. 

 

Therefore 

 

    Rn(r)  =  Cn rn      and   un(r, θ)  =  Rn(r) θn (θ) 

 

                             ∞                          ∞ 

So    u((r, θ)  =     ∑  Rn(r) θn (θ)  =  ∑  Cn rn  sin nθ   
                           n = 1                       n = 1 

 

                                          ∞                              ∞                                 

Now    u(a,θ)  =  f(θ)  =    ∑  Cn an  sin nθ  =    ∑ bn sin nθ 
                                         n=1                            n=1 
                                π 

where   bn  =  (2/π) ∫  f(θ) sin nθ  dθ   

                                       0 

  By comparing terms    Cn an  =  bn    

                                                                                                      

                                                             π 

So                  Cn  =  bn/an   =  (2/π an)  ∫ f(θ) sin nθ dθ 

                                                             0 

and  finally 

 

                        ∞ 

         u(r,θ)  =  ∑  Cn  rn  sin nθ 

                      n=1 

 

 

   Example      Heat Conduction in a Semi-Infinite Plate                        
 

 

 

Consider steady state heat conduction in the semi-infinite plate shown below with 

edges x = 0 and x = a insulated and with the temperature distribution along the bottom 

edge of the plate also specified.   Solve for the temperature distribution in the plate. 

 

So                            uxx  +  uyy  =  0         ------------------------------------   (1) 

 

          ux (0, y)  =  ux (a, y)  =   0     and        u(x, 0)  =  f(x) 
 



 

 

 

                                
 

 

 

 

 

Separate variables by assuming  u(x,y) = X(x)Y(y) and by putting this  

 

expression  into eq. 1 above. Then divide by XY. 

 

                      - X ’’/X   =   Y ’’/Y   =  separation constant   =  λ 

 

So                    X ’’  +  λ X  =   0         and            Y ’’  -  λ Y   =   0 

 

The separation constant, λ, can take on three possible cases --  such as   

λ  =  0,  λ  <  0,  and  λ  >  0 .  You need to evaluate each case. 
 

 

Note that the boundary conditions are : 

 

                                           X' (0)  =  X ' (a)  =  0 

 

So start with the equation      X ’'  +   λ X  =  0 

 



 

    

 So for Case 1        λ  =  0               X ’’ =   0    or             X (x)  =  Ax  +  B 

 

    So     X '(0)  =  0  =  A      and        X ' (a)  =  0,  So    X (x) = B 

 

   and           λo  =  0      is an eigenvalue with  associated eigenvector  Xo(x)  =  B 

 

For Case 2   λ  <  0     λ = ˗ α2      and   θ ’'  ˗   α2  θ  =  0 

 

      X (x)  =  A cosh αx  +  B sinh αx        X ' (0)  =  0  =  Bα   and   α ≠ 0  so  B = 0 

 

     X ' (a)  =  0  =  Aα sinh αa             Since  α ≠ 0  and sinh αa  ≠  0    

 

Therefore         A  =  0   and there are no eigenvalues associated with this case. 
    

For Case 3   λ   >  0    λ  = α2          θ ’'  +   α2  θ  =  0 

 

                            X (x)  =  A cos αx  +  B sin αx 

 

                            X ' (0)  =  0  =  Bα   Since  α ≠ 0  B =  0 

 

  and   X ' (a)  =   0  =    ˗ Aα sin αa 
 

For a nontrivial solution  A  ≠  0.    So  sin αa  =  0  and   αna  =  nπ 

   

Therefore    αn  =  nπ/a    and the eigenvalues for this case are   λn  =  n2π2 / a2 

 

with associated eigenfunctions   X n(x)  =  cos nπx/a 

 

 

Next continue with the solution for  Yn(y) using the eigenvalues already determined. 

 

 

For Case 1  λ   =  0         Y’’(y)  =  0 

 

                    Y(y)  =  C y  +  D   and    C = 0  for Y(y) to be bounded as  y → ∞ 

 

 

So   for   λo   =  0           yo(y)  =  D 

 

and                            uo(x,y)  =  xo(x)yo(y)  =  (B)(D)  =  Co  
 

 

 

Now for Case 3      λn  = αn
2   =  (nπ/a)2       Y’’(y)  -  (nπ/a)2 Y(y)  =   0 

 

With the general solution      Y(y)  = C exp[ nπy/a ] +  D exp[ ˗ nπy/a] 

 
 



 

Now with   lim Y(y)  bounded    C must be zero.  

                  y→∞ 

So                             Yn(y)  =  exp[ ˗ nπy/a] 

 

So           un(x, y)  =  Xn Yn    =  cos(nπx/a) [exp (˗ nπy/a)] 

 

                                       ∞ 

So   u(x, y)   =    Co   +  ∑  Cn  cos(nπx/a) [exp (˗ nπy/a)] 
                                    n  =  1 

 

                                                   ∞ 

Now           u(x, 0)   =    Co   +  ∑  Cn  cos(nπx/a)     =     f(x) 
                                                n  =  1 

   

Choose  Co  =  ao/2  and  Cn  =  an  where the Fourier coefficients are 

 

                       a                                           a 

     ao  =  (2/a) ∫ f(x) dx      and  an  =  (2/a) ∫ f(x) cos (nπx/a)  dx 

                      0                                           0 

 

And the temperature distribution becomes 

 

                                           ∞ 

       u(x, y)   =    ao / 2   +  ∑  an  cos(nπx/a) [exp (˗ nπy/a)] 
                                        n  =  1 

 

 


