In a Nut Shell: The governing equation for heat conduction in a plate is:

 $\partial u/\partial t = k \left[\partial^2 u/\partial x^2 + \partial^2 u/\partial y^2 \right]$ ------ (1)

where u = u(x,y,t) = the temperature in the plate at any time t x,y = the location in the plate t = the time at which the temperature at x is u(x,y,t)and k is the thermal diffusivity of the material

The desired outcome is to predict the temperature distribution, u(x,y,t), in the plate as a function of time, t.

For steady-state heat conduction, $\partial u/\partial t = 0$. So the **steady-state temperature**

distribution in the plate is governed by Laplace's equation:

Strategy: Use the method of separation of variables to solve (2) subject to the boundary conditions.

Consider a thin plate with dimensions (a by b) shown below. The objective is to find

the steady state temperature distribution given boundary conditions on each edge of

the plate.

A complicated case exists when each edge has a nonhomogeneous boundary condition. i.e. $u(x,0) = f_1(x)$, $u(x,b) = f_2(x)$ (0 < x < a) and $u(0,y) = g_1(y)$, $u(a,y) = g_2(y)$ (0 < y < b) See the figure below.

$$u(x,y) = u_1(x,y) + u_2(x,y) + u_3(x,y) + u_4(x,y)$$

In a Nut Shell: The typical heat conduction problem involves finding the steady-state temperature distribution in the plate subject to specified boundary conditions on each edge of the plate. The various boundary conditions include:

The edges of the plate have specified temperatures. In that case:

 $u(0,y) = f_1(y)$, $u(a,y) = f_2(y) =$ prescribed temperature at edges x = 0 and x = a

 $u(x,0) = h_1(x)$, $u(x,b) = h_2(x) =$ prescribed temperature at edges y = 0 and y = b

The edges of the plate might be insulated. In that case:

 $u_x(0,y) = 0$, $u_x(a,y) = 0$ = insulated edges at x = 0 and x = a $u_y(x,0) = 0$, $u_y(x,b) = 0$ = insulated edges at y = 0 and y = b

Note: The actual boundary conditions might involve any combination of these b.c's. However, you always need to have a total of four boundary conditions since the governing equation, $u_{xx} + u_{yy} = 0$, has second derivatives in both x and y.

The heat conduction equation involves two independent variables, x and y. **Strategy:** Use "separation of variables" to separate out the spatial variables, x and y.

Assume u(x,y) = X(x) Y(y) ------(3)

Put this expression into $u_{xx} + u_{yy} = 0$, eq (2), and take derivatives.

X''Y + XY'' = 0

Next, separate the variables. (division by XY)

 $X'' + \lambda X = 0$

- X''/X = Y''/Y = separation constant = λ

So

and $Y'' - \lambda Y = 0$

Note: The separation constant, λ , can take on three possible cases -- such as $\lambda = 0, \lambda > 0$, and $\lambda < 0$. You need to evaluate each case.

Example: Solve for the steady state heat conduction in a plate (a by b) with edges x = 0 and x = a insulated.

Let the temperature along the edge, y = 0, be u(x, 0) = 0 and the temperature distribution along the edge, y = b, is u(x, b) = f(x). See the figure below.

So

 $u_{xx} + u_{yy} = 0$ (eq. 1)

 $u_x(0, y) = u_x(a, y) = 0$

u(x, 0) = 0 and u(x, b) = f(x)

So

 $X'' + \lambda X = 0$

and

 $Y'' - \lambda Y = 0$

The separation constant, λ , can take on three possible cases -- such as $\lambda = 0$, $\lambda > 0$, and $\lambda < 0$. You need to evaluate each case.

Next consider each case for the separation constant, λ , individually. Recall that the

three cases are: $\lambda = 0$, $\lambda > 0$, and $\lambda < 0$.

Note: The boundary conditions at edges of the plate (x = 0 and x = a) are homogeneous.

$$X'(0) = X'(a) = 0$$

Strategy: Determine the eigenvalues and related eigenfunctions for the eigenvalue problem with homogeneous boundary conditions.

Start with the equation $-X''/X = \lambda$.

For Case 1: $\lambda = 0$ X'' = 0, X(x) = Ax + B, X'(x) = A So X'(0) = 0 = A and therefore X(x) = B, $X_0(x) = 1$ The eigenvalue $\lambda_0 = 0$ and the associated eigenfunction is $X_0(x) = 1$ For Case 2: $\lambda > 0$ $\lambda = \alpha^2$ $X'' + \alpha^2 X = 0$ $X(x) = A \cos \alpha x + B \sin \alpha x$ $X'(x) = -A\alpha \sin \alpha x + B\alpha \cos \alpha x$ X'(0) = 0 = B α , since $\alpha \neq 0$, B = 0 X'(a) = 0 = -Aa sin aa and $a \neq 0$ with $A \neq 0$ for a nontrivial solution Thus $\sin \alpha = 0$, so $\alpha = n\pi$ n = 1, 2, 3, ...The eigenvalues are $\lambda_n = \alpha_n^2 = (n\pi/a)^2$ with eigenfunctions $X_n(x) = \cos(n\pi x/a)$ For Case 3 $\lambda < 0$ $\lambda = -\alpha^2$ X'' - α^2 X = 0 $X(x) = A \cosh \alpha x + B \sinh \alpha x$ $X'(x) = A\alpha \sinh \alpha x + B\alpha \cosh \alpha x$ X'(0) = 0 = B α , since $\alpha \neq 0$, B = 0 and X(x) = A cosh αx X'(a) = 0 = A α sinh a α and since sinh a α and $\alpha \neq 0$, A = 0 which yields the trivial solution for Case 3. Therefore there are no eigenvalues nor eigenvectors for this case. Next continue with the solution for $Y_n(y)$. Strategy: Use the eigenvalues already determined. For Case 1 $\lambda = 0$ Y''(y) = 0 Y(y) = A y + B and Y(0) = 0 = BSo for $\lambda_0 = 0$ $Y_0(y) = y$ Now for Case 2 $\lambda_n = \alpha_n^2 = (n\pi/a)^2$ Y''(y) - $(n\pi/a)^2 Y(y) = 0$ with the general solution $Y(y) = A \cosh(n\pi y/a) + B \sinh(n\pi y/a)$ Now with Y(0) = 0 = A, $Y_n(y) = \sinh(n\pi y/a)$

Result: The set of eigenvalues and eigenfunctions for cases 1 and 2 are:

$$\lambda_0 = 0, X_0 = 1, Y_0 = y, \qquad \lambda_n = (n\pi/a)^2, X_n = \cos(n\pi x/a), Y_n = \sinh(n\pi y/a)$$

Strategy: Sum the "product" solutions: $u(x,y) = u_0(x,y) + \sum u_n(x,y)$

where $u_0(x, y) = X_0 Y_0 = (1)(y) = y$

and

 $u_n(x, y) = X_n Y_n = \cos(n\pi x/a) \sinh(n\pi y/a)$

So $u(x, y) = b_0 y + \sum_{n=1}^{\infty} b_n \sinh(n\pi y/a) \cos(n\pi x/a)$ n = 1

Next satisfy the temperature distribution, f(x), along y = b

So
$$u(x, y) = b_0 y + \sum_{n=1}^{\infty} b_n \sinh(n\pi y/a) \cos(n\pi x/a)$$
 ------ (1)

The temperature distribution along y = 0 is u(x,b) = f(x).

So
$$u(x, b) = f(x) = b_0 b + \sum_{n=1}^{\infty} b_n \sinh(n\pi b/a) \cos(n\pi x/a)$$
 ------ (2)

Strategy: Represent f(x) with a Fourier cosine series as follows:

(Since the x-dependence of u(x, y) depends on $cos(n\pi x/a)$)

$$f(x) = a_0/2 + \sum_{n=1}^{\infty} a_n \cos(n\pi x/a) \quad -----(3)$$

Strategy: Determine b_0 and b_n by comparing coefficients between (2) and (3).

 $b_0 b = a_0/2$ and $b_n \sinh(n\pi b/a) = a_n$

So $b_0 = a_0/2b$ and $b_n = a_n / \sinh(n\pi b/a)$

Thus the solution for the steady state temperature distribution in the plate is:

$$u(x, y) = a_0 y/2b + \sum_{n=1}^{\infty} a_n [\sinh(n\pi y/a) / \sinh(n\pi b/a) \cos(n\pi x/a)]$$

where

$$a_n = (2/a) \int_0^a f(x) \cos(n\pi x/a) dx$$
 and $a_0 = (2/a) \int_0^a f(x) dx$

Heat Conduction in a Circular or Semi-Circular Plate

In a Nut Shell: The governing equation for heat conduction in a circular or semi-circular plate is:

 $\partial \mathbf{u}/\partial \mathbf{t} = \mathbf{k} \left[\partial^2 \mathbf{u}/\partial \mathbf{r}^2 + (1/\mathbf{r}) \partial \mathbf{u}/\partial \mathbf{r} + (1/\mathbf{r}^2) \partial^2 \mathbf{u}/\partial \theta^2 \right] - \dots$ (1)

where $u = u(r,\theta,t) =$ the temperature in the plate at any time t r, θ = the location in the plate t = the time at which the temperature at x is u(r, θ ,t) and

k is the thermal diffusivity of the material

When applied to a plate, the desired outcome is to predict the temperature distribution, $u(r,\theta,t)$, in the plate as a function of time.

For steady-state heat conduction, $\partial u/\partial t = 0$. So the steady-state temperature

distribution in the plate is governed by Laplace's equation:

$$\partial^2 \mathbf{u}/\partial \mathbf{r}^2 + (1/\mathbf{r}) \,\partial \mathbf{u}/\partial \mathbf{r} + (1/\mathbf{r}^2) \,\partial^2 \mathbf{u}/\partial \theta^2 = 0 \quad ------(2)$$

Use the method of separation of variables to solve (2) subject to the boundary conditions.

Consider a thin semi-circular plate of radius a shown below. The objective is to find the steady state temperature distribution given boundary conditions on the boundary of the plate.

The typical heat conduction problem involves finding the steady-state temperature distribution in the semi-circular plate subject to specified boundary conditions on each edge of the plate. The various boundary conditions include:

 $u(a,\theta) = f(\theta), \quad u(r,0) = u(r,\pi) = 0$ $u(a,\theta) = f(\theta), \quad u_{\theta}(r,0) = u_{\theta}(r,\pi) = 0$ $u(a,\theta) = f(\theta), \quad u(r,0) = u_{\theta}(r,\pi) = 0$ $u(a,\theta) = f(\theta), \quad u_{\theta}(r,0) = u(r,\pi) = 0$

here $u(a,\theta) = f(\theta)$ is prescribed temperature on r = a

In addition the for continuity a finite temperature must exist at r = 0 for any θ .

Since the heat conduction equation involves two independent variables, x and y,

"separation of variables" is needed to separate out the spatial variables, x and y.

Assume $u(r,\theta) = R(r) \theta(\theta)$ ----- (3)

Put this expression into eq (2) and take derivatives.

 $\mathbf{R''}\boldsymbol{\theta} + (1/\mathbf{r}) \mathbf{R'}\boldsymbol{\theta} + (1/\mathbf{r}^2)\mathbf{R}\boldsymbol{\theta}^{\prime\prime} = \mathbf{0}$

Next, separate the variables. (division by XY)

$$(r^2 R'' + rR')/R = -\theta''/\theta = \text{separation constant} = \lambda$$

So

$$r^2 R'' + rR' - \lambda R = 0$$

and
$$\theta'' + \lambda \theta = 0$$

The separation constant, λ , can take on three possible cases -- such as

 λ = 0, λ > 0, and λ < 0 . You need to evaluate each case.

Example: Consider steady state heat conduction in a semicircular plate of radius a shown below. The temperature along the edge, y = 0, u(x, 0) = 0 and the temperature distribution along the edge, y = b, is u(x, b) = f(x). See the figure below.

 $R''\theta + (1/r) R'\theta + (1/r^2)R\theta'' = 0$ (1) $u(r, 0) = u(r, \pi) = 0$ $u(a, \theta) = f(\theta)$ (prescribed temperature distribution on r = a)

Strategy: Separate the variables by assuming $u(r,\theta) = R(r) \theta(\theta)$, by putting this expression into eq. 1 above. The result is: $(r^2 R'' + rR')/R = -\theta''/\theta = \text{separation constant} = \lambda$ $\mathbf{r}^2 \mathbf{R}'' + \mathbf{r} \mathbf{R}' - \lambda \mathbf{R} = \mathbf{0}$ So $\theta'' + \lambda \theta = 0$ and The separation constant, λ , can take on three possible cases -- such as $\lambda = 0, \ \lambda > 0$, and $\lambda < 0$. You need to evaluate each case. Note that the boundary conditions are: $\theta(0) = \theta(\pi) = 0$ **Strategy**: Start with the eigenvalue problem: $\theta'' + \lambda \theta = 0$ and examine the three possible cases for the eigenvalues of λ as shown in the table below. **Case 1:** $\lambda = 0$ $\theta'' = 0$ or $\theta(\theta) = A\theta + B$ So $\theta(0) = B$ and $\theta(\pi) = A\pi = 0$ So A = 0Result: There are no eigenvalues for this case. **Case 2:** $\lambda < 0$ $\lambda = -\alpha^2$ and $\theta'' - \alpha^2 \theta = 0$ $\theta(\theta) = A \cosh \alpha \theta B \sinh \alpha \theta$ $\theta(0) = 0 = A$ and $\theta(\pi) = 0 = B \sinh \alpha \pi$ Since $\alpha \neq 0$ and $\sinh \alpha \pi \neq 0$ Therefore B = 0 and there are no eigenvalues for this case. **Case 3:** $\lambda > 0$ $\lambda = \alpha^2$ and $\theta'' + \alpha^2 \theta = 0$ $\theta(\theta) = A \cos \alpha \theta + B \sin \alpha \theta$ $\theta(0) = A$ and $\theta(\pi) = 0 = B \sin \alpha \pi$ For a nontrivial solution $B \neq 0$. So $\sin \alpha \pi = 0$ and $\alpha_n \pi = n\pi$ Therefore $\alpha_n = n$ and the eigenvalues for this case are $\lambda_n = n^2$ with associated eigenfunctions $\theta_n = \sin n\theta$

So
$$r^2 R'' + rR' - n^2 R = 0$$

Note that this differential equation has variable coefficients. So assume
 $R(r) = r^K$ and substitute into the differential equation .
Note: $R' = k r^{K-1}$ and $R'' = k(k-1) r r^{K-2}$
So $[k(k-1) + k - n^2] r^K = 0$
Sine $r^K \neq 0$ $k^2 - n^2 = 0$ and $k = \pm n$ which yields
 $R(r) = C r^n + Dr^{-n}$ and for a continuous solution at $r = 0$ D must be zero.
Therefore
 $R_n(r) = C_n r^n$ and $u_n(r, \theta) = R_n(r) \theta_n(\theta)$
So $u((r, \theta) = \sum_{n=1}^{\infty} R_n(r) \theta_n(\theta) = \sum_{n=1}^{\infty} C_n r^n \sin n\theta$
Now $u(a, \theta) = f(\theta) = \sum_{n=1}^{\infty} C_n a^n \sin n\theta = \sum_{n=1}^{\infty} b_n \sin n\theta$
where $b_n = (2/\pi) \int_0^{\pi} f(\theta) \sin n\theta d\theta$
By comparing terms $C_n a^n = b_n$

and finally

$$u(r,\theta) = \sum_{n=1}^{\infty} C_n r^n \sin n\theta$$

Example Heat Conduction in a Semi-Infinite Plate

0

Consider steady state heat conduction in the semi-infinite plate shown below with edges x = 0 and x = a insulated and with the temperature distribution along the bottom edge of the plate also specified. Solve for the temperature distribution in the plate.

 $u_x(0, y) = u_x(a, y) = 0$ and u(x, 0) = f(x)

So for Case 1 $\lambda = 0$ X'' = 0 or X(x) = Ax + B So X'(0) = 0 = A and X'(a) = 0, So X(x) = Band $\lambda_0 = 0$ is an eigenvalue with associated eigenvector $X_0(x) = B$ **For Case 2** $\lambda < 0$ $\lambda = -\alpha^2$ and θ " $-\alpha^2 \theta = 0$ X (x) = A $\cosh \alpha x$ + B $\sinh \alpha x$ X '(0) = 0 = B α and $\alpha \neq 0$ so B = 0 X'(a) = 0 = A α sinh α a Since $\alpha \neq 0$ and sinh α a $\neq 0$ Therefore A = 0 and there are no eigenvalues associated with this case. For Case 3 $\lambda > 0$ $\lambda = \alpha^2$ $\theta'' + \alpha^2 \theta = 0$ $X(x) = A \cos \alpha x + B \sin \alpha X$ X'(0) = 0 = B\alpha Since $\alpha \neq 0$ B = 0 and X'(a) = 0 = $-A\alpha \sin \alpha a$ For a nontrivial solution $A \neq 0$. So $\sin \alpha a = 0$ and $\alpha_n a = n\pi$ Therefore $\alpha_n = n\pi/a$ and the eigenvalues for this case are $\lambda_n = n^2\pi^2/a^2$ with associated eigenfunctions $X_n(x) = \cos n\pi x/a$ Next continue with the solution for $Y_n(y)$ using the eigenvalues already determined. **For Case 1** $\lambda = 0$ Y''(y) = 0 Y(y) = C y + D and C = 0 for Y(y) to be bounded as $y \to \infty$ So for $\lambda_0 = 0$ $y_0(y) = D$ $u_o(x,y) = x_o(x)y_o(y) = (B)(D) = C_o$ and

Now for Case 3 $\lambda_n = \alpha_n^2 = (n\pi/a)^2$ Y''(y) - $(n\pi/a)^2$ Y(y) = 0 With the general solution Y(y) = C exp[$n\pi y/a$] + D exp[- $n\pi y/a$] Now with $\lim_{y\to\infty} Y(y)$ bounded C must be zero.

So
$$Y_n(y) = \exp[-n\pi y/a]$$

So $u_n(x, y) = X_n Y_n = \cos(n\pi x/a) [\exp(-n\pi y/a)]$

So
$$u(x, y) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\pi x/a) [\exp(-n\pi y/a)]$$

Now
$$u(x, 0) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\pi x/a) = f(x)$$

Choose $C_{\rm o}$ = $a_{\rm o}\!/2\,$ and $\,C_{n}$ = $a_{n}\,$ where the Fourier coefficients are

$$a_{o} = (2/a) \int_{0}^{a} f(x) dx$$
 and $a_{n} = (2/a) \int_{0}^{a} f(x) \cos(n\pi x/a) dx$

And the temperature distribution becomes

$$u(x, y) = a_o / 2 + \sum_{n=1}^{\infty} a_n \cos(n\pi x/a) [\exp(-n\pi y/a)]$$