Integrals using Integration by Parts

In a Nut Shell: Integration by parts is very useful for integrals of the form $I=\int u d v$.

The basic relation used for Integration by Parts is:

$$
\mathrm{I}=\int u d v=u v-\int v d u \quad \leftarrow \text { This is the basic relation }
$$

Example: $\int\left(\ln x / x^{2}\right) d x$

$$
\text { let } u=\ln x, \quad d v=\left(1 / x^{2}\right) d x \quad \leftarrow \text { Standard form for integral }
$$

Here $\int\left(1 / x^{2}\right) d x$ is a standard integral of the form $\int x^{n} d x=\left(x^{n+1}\right) /(n+1)+c$

$$
\text { So } \quad d u=(1 / x) d x \quad \text { and } \quad v=-(1 / x)
$$

Then I becomes $-(1 / x) \ln x+\int\left(1 / x^{2}\right) d u$
with the standard form again $\quad \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\left(\mathrm{x}^{\mathrm{n}+1}\right) /(\mathrm{n}+1)+\mathrm{c}$
Result: $\quad I=-(1 / x) \ln x-1 / x+c$
c is the constant of integration

Method: Multiple Use of Integration by Parts

$$
I=\int u d v=u v-\int v d u
$$

Example: $I=\int x^{2} e^{2 x} d x$

$$
\begin{array}{ll}
\text { let } u=x^{2}, & d v=e^{2 x} d x \quad \leftarrow \\
d u=2 x d x & v=1 / 2 e^{2 x}
\end{array}
$$

Then I becomes $1 / 2 x^{2} e^{2 x}-\int x e^{2 x} d x$ and integrate by parts again,

$$
\begin{array}{rlrl}
\text { let } \mathrm{u} & =\mathrm{x}, & \mathrm{dv}=\mathrm{e}^{2 \mathrm{x}} \mathrm{dx} & \leftarrow \text { Standard integral } \int \mathrm{e}^{\mathrm{ax}} \mathrm{dx} \\
\mathrm{du} & =\mathrm{dx} & \mathrm{v}=1 / 2 \mathrm{e}^{2 \mathrm{x}}
\end{array}
$$

Result: $I=1 / 2 x^{2} e^{2 x}-1 / 2 x e^{2 x}+1 / 4 e^{2 x}+c$
c is the constant of integration

In a Nut Shell: There are three common types of integrals where integration by parts is the recommended procedure. Each integral has the form $\mathbf{I}=\int \mathbf{u d v}=\mathbf{u v}-\int \mathbf{v} \mathbf{d u}$. It is best to identify these types before applying integration by parts. The table below details the strategies for these types along with examples.

Type 1: The integral, I, has the following form: $\int f(x) g(x) d x$.
Here you know the integrals for both $f(x)$ and $g(x)$. So you need to pick u and $d v$ such that it simplifies the integral $\int v$ du compared with the original integral $\int f(x) g(x) d x$.

Example: $\quad I=\int x \cos x d x$ Here you know both integrals for x and for $\cos \mathrm{x}$.
Pick $u=x$ and $d v=\cos x d x$
Then $d u=d x$ and $v=\sin x$ so $I=x \sin x-\int \sin x d x$
Finally $\mathrm{I}=\mathrm{x} \sin \mathrm{x}+\cos \mathrm{x}+\mathrm{C}$
(result)
Note: If you were to pick $u=\cos x$ and $d v=x d x$ the next integral
Then $d u=-\sin x d x$ and $v=\left(x^{2} / 2\right)$ and the second integral would be more complicated. i.e. $\int\left(\left(x^{2} / 2\right) \sin x d x\right.$ than the one you started out with.

Type 2: The integral, I, has the following form: $\int f(x) g(x) d x$. Here suppose you only know the integral for one of the two functions, $f(x)$ and $g(x)$. So you need to pick u for the function where you don't know its integral.

Example: $\quad \mathrm{I}=\int \mathrm{x} \ln \mathrm{x} d \mathrm{x}$ Here you don't know the integral for $\ln \mathrm{x}$.
Therefore pick $u=\ln x$ and $d v=x$
Then $\quad d u=(1 / x) d x$ and $v=\left(x^{2} / 2\right)$ so $I=\left(x^{2} / 2\right) \ln x-\int(x / 2) d x$
Finally $\mathrm{I}=\left(\mathrm{x}^{2} / 2\right) \ln \mathrm{x}-\mathrm{x}^{2} / 4+\mathrm{C} \quad$ (result)

In a Nut Shell: Type $\mathbf{3}$ is the most complicated since it involves integration by parts twice.

The integral, I, has the following form: $\int f(x) g(x) d x$. Here you know the integrals for both $f(x)$ and $g(x)$. However, you will need to integrate twice in order to return an integral similar to the original integral. So you need to pick
u and $d v$ such that the integral $\int v d u$ in the second integration is similar to the original integral $\int f(x) g(x) d x$ except for a constant.

Example: $\mathrm{I}=\int \mathrm{e}^{\mathrm{x}} \cos \mathrm{x} \mathrm{dx}$
Here you know both integrals for e^{x} and for $\cos \mathrm{x}$.
For the first integration:
Pick $u=e^{x}$ and $d v=\cos x d x$
Then $d u=e^{x} d x$ and $v=\sin x$ so $I=e^{x} \sin x-\int e^{x} \sin x d x$
For the second integration:
Pick $u=e^{x}$ and $d v=-\sin x d x$
Then $d u=e^{x} d x$ and $v=\cos x$
So $I=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x$
But $\int e^{x} \cos x d x=I$ Collect terms: So $2 I=e^{x} \sin x+e^{x} \cos x$
And finally $\mathrm{I}=(1 / 2)\left[\mathrm{e}^{\mathrm{x}}(\sin \mathrm{x}+\cos \mathrm{x})\right]+\mathrm{C} \quad$ (result)

