In a Nut Shell: In general, differential equations where the independent variable, t , does not appear explicitly such as:

$$
\mathrm{dy} / \mathrm{dt}=\mathrm{f}(\mathrm{y})
$$

are termed "autonomous differential equations". Mathematical models representing growth and decay fall into this category. The table below gives two of the simpler ones.

Differential equation involving "growth"

$$
\mathrm{dy} / \mathrm{dt}=\mathrm{Ky} ; \text { here rate of change of } \mathrm{y} \text { is proportional to itself }
$$

subject to $y(0)=y_{o}$ which represents the initial condition of y at $t=0$

$$
\mathrm{K}=\text { proportionality constant }
$$

Applications:

a. population growth
b. annual rate (income)

$$
\begin{aligned}
& d y / y=K d t \quad \text { (separate variables } y \text { and } t \text { and integrate) } \\
& \ln y=K t+C_{1}, C_{1} \text { is the constant of integration } \\
& y=\exp \left(K t+C_{1}\right)=C e^{K t}
\end{aligned}
$$

Differential equation involving "decay" (negative growth)

$$
\mathrm{dy} / \mathrm{dt}=-\mathrm{K} y \quad ; \text { here rate of change of } \mathrm{y} \text { is proportional to its }
$$

subject to $y(0)=y_{o}$ which represents the initial condition of y at $t=0$

$$
\mathrm{K}=\text { proportionality constant }
$$

i.e.

$$
\begin{aligned}
& K=\text { decay constant } \\
& K=\text { sales decay constant } \\
& K=\text { drug elimination constant }
\end{aligned}
$$

Applications: a. radioactive decay (radiocarbon dating)

b. annual rate (income)

$$
\begin{aligned}
& d y / y=-K d t \quad \text { (separate variables } y \text { and } t \text { and integrate) } \\
& \ln y=-K t+C_{1}, C_{1} \text { is the constant of integration } \\
& y=\exp \left(-K t+C_{1}\right)=C e^{-K t}
\end{aligned}
$$

Example: An initial sample contains 100 cells and grows at a constant rate. After 8 hours there are 2000 cells. Determine the growth rate, find an expression, $y(t)$, for the population of cells at any time t, and determine the number of cells after 24 hours.

Strategy: Apply

$$
y(t)=C e^{k t}
$$

where $y(t)$ is the size of the population at any time t
$y(0)=100=C=$ initial population
k is the growth rate (to be found)

$$
y(8)=100 e^{8 k}=2000
$$

$$
\mathrm{e}^{8 \mathrm{k}}=20 \quad \text { So } 8 \mathrm{k}=\ln (20) \text { and } \mathrm{k}=(1 / 8) \ln (20)
$$

$$
\mathrm{k}=\ln \left(20^{1 / 8}\right) \quad \text { (result) }
$$

So

$$
\begin{array}{rlr}
y(t) & =100 \exp \left[\left(\ln \left[20^{1 / 8}\right) t\right]\right)=(100) 20^{1 / 8} & \text { (result) } \\
y(24) & =(100) 20^{3}=800,000 \text { cells } & \text { (result) }
\end{array}
$$

Example: A sample of 50 cancer cells are treated with radiation such that half of them are killed in 28 days. Assume a constant decay rate. Find the decay rate, the general expression for the number of cancer cells after t days, and how many cells still survive after 40 days.

Strategy: Apply $\mathrm{y}(\mathrm{t})=\mathrm{C} \mathrm{e}^{\mathrm{kt}} \quad \mathrm{y}(0)=50$

$$
\begin{aligned}
& \mathrm{y}(\mathrm{t})=50 \mathrm{e}^{\mathrm{kt}} \\
& 25 / 50=1 / 2=\mathrm{e}^{28 \mathrm{k}} \\
& 28 \mathrm{k}=\ln (1 / 2), \quad \mathrm{k}=(1 / 28) \ln (1 / 2)=-\ln \left(2^{1 / 28}\right) \\
& \text { (result) } \\
& \mathrm{y}(\mathrm{t})\left.=50 \exp \left[-\ln \left(2^{1 / 28}\right) \mathrm{t}\right]\right]=(50) 2^{-\mathrm{t} / 28} \\
& y(40)=(50) 2^{-40 / 28}=(50) 2^{-10 / 7} \approx 19 \text { cells }
\end{aligned}
$$

