Existence and Uniqueness of Solutions of Linear Second Order Differential Equations

In a Nut Shell: Under restrictions solutions exist for linear second order differential equations that are unique throughout an interval. The theorem below details these restrictions.

Theorem for a general second order, ordinary differential equation of the form:

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

with initial conditions $\quad y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y^{\prime}{ }_{0}$
where $p(x), q(x)$, and $g(x)$ are continuous functions on an open interval I that contains the point X_{o}.

Then there is only one solution , y , that exists throughout the interval I. i.e.
A solution exists for the differential equation .
The differential equation has only one solution. The solution is unique.
The solution exists throughout the interval I where the coefficients are continuous and twice differentiable in the interval.

Example: Determine the longest interval, I, for the following initial value application.

$$
\begin{gathered}
(x-5) y^{\prime \prime}+x y^{\prime}+(\ln x) y=0 \quad y(3)=0, y^{\prime}(3)=2 \\
y^{\prime \prime}+\left(x /(x-5) y^{\prime}+\ln x /(x-5) y=0\right.
\end{gathered}
$$

$x /(x-5)$ continuous except for $x=5$
$\ln \mathrm{x} /(\mathrm{x}-5)$ continuous except for $\mathrm{x}=5$ with restriction $\mathrm{x}>0$
So the longest interval containing $\mathrm{x}=3$ is $(0,5) \quad$ (result)

Example: Determine the longest interval, I, for the following initial value application.

$$
\begin{gathered}
(x-5) y^{\prime \prime}+x y^{\prime}+(\ln x) y=0 \quad y(3)=0, y^{\prime}(3)=2 \\
y^{\prime \prime}+\left(x /(x-5) y^{\prime}+\ln x /(x-5) y=0\right.
\end{gathered}
$$

$x /(x-5)$ continuous except for $x=5$
$\ln \mathrm{x} /(\mathrm{x}-5)$ continuous except for $\mathrm{x}=5$ with restriction $\mathrm{x}>0$
So the longest interval containing $\mathrm{x}=3$ is $(0,5) \quad$ (result)

Example: Determine the longest interval, I, for the following differential equation.

$$
\begin{aligned}
& \left(x^{2}-36\right) y^{(4)}+6 x^{2} y " '+18 y=0 \\
& y^{(4)}+\left[6 x^{2} /\left(x^{2}-36\right)\right] y \text { '" }+\left[18 /\left(x^{2}-36\right)\right] y=0 \\
& y^{(4)}+\left[6 x^{2} /(x-6)(x+6)\right] y y^{\prime \prime}+[18 /(x-6)(x+6)] y=0
\end{aligned}
$$

Points of discontinuity are at $x=6$ and at $x=-6$
So the longest interval contains $(-\infty,-6)(-6,6)(6, \infty) \quad$ (result)

