Comparison Test for Improper Integrals

In a Nut Shell: Sometimes improper integrals involve complicated expressions that cannot be integrated. Yet, one still wants to determine if the improper integral converges or not. The "comparison test" provides a way to evaluate such integrals.

Strategy: Consider the original improper integral:

$$
I=\int_{0}^{\infty} f(x) d x
$$

a
where $f(x)$ is a complicated function. The strategy is to find another integral with a simpler function, $\mathrm{g}(\mathrm{x})$, that you can evaluate

$$
I=\int_{a}^{\infty} g(x) d x
$$

where $f(x) \geq g(x) \geq 0$ on the interval $[a, \infty)$.

Then the comparison theorem provides the following:
a. If
$\int_{a}^{\infty} f(x) d x \quad$ converges then so does
$I=\int^{\infty} g(x) d x$
a
b. If $\quad \int_{a}^{\infty} g(x) d x \quad$ diverges then so does $\quad I=\int_{a}^{\infty} f(x) d x$

Reasoning: If the area under the larger function, $\mathrm{f}(\mathrm{x})$, is finite, then the area under the smaller function, $\mathrm{g}(\mathrm{x})$, must also be finite. (converges) Likewise, if the area under the smaller function, $\mathrm{g}(\mathrm{x})$, is infinite, then the area under the larger function, $\mathrm{f}(\mathrm{x})$, must also be infinite. (diverges).

Strategy: Examine $f(x)$ and reason whether it might converge or diverge. Then pick $g(x)$ appropriately.

Note: The actual value of the improper integral, if it converges, is not determined.

In a Nut Shell: The improper integral may involve several types of functions, products of functions, and/or quotients of functions that increase at different rates as the independent variable, x , increases towards infinity. Useful inequalities of several functions are given below.

Growth of functions as \mathbf{x} increases without bounds:

$$
\ln \mathrm{x} \ll \mathrm{x}^{\mathrm{P}} \leq \mathrm{b}^{\mathrm{x}} \ll \mathrm{x}^{\mathrm{x}}
$$

where p is a positive exponent

Example $\quad I=\int_{0}^{\infty}\left(\left[x /\left(x^{3}+1\right)\right] d x\right.$
Note that the denominator dominates for large values of x . So it appears that the improper integral probably converges.

Here $g(x)=x /\left(x^{3}+1\right)$. So pick an $f(x)$ that is larger than $g(x)$. Then if
$\int f(x) d x$ converges so will $\int g(x) d x$.
$I=\int_{0}^{\infty}\left[x /\left(x^{3}+1\right)\right] d x=\int_{0}^{1}\left(\left[x /\left(x^{3}+1\right)\right] d x+\int_{1}^{\infty}\left(\left[x /\left(x^{3}+1\right)\right] d x\right.\right.$
Note the first integral is definite and the second one is improper.
Pick $f(x)=1 / x^{2}$ and $g(x)=x /\left(x^{3}+1\right)$.
Note: $1 / x^{2}>x\left(x^{3}+1\right)$ for large values of x. So $f(x) \geq g(x)$.

$$
\begin{aligned}
& I_{c}=\int_{1}^{\infty} 1 / x^{2} d x \\
& I_{c}=\left.\lim _{t \rightarrow \infty}(-1 / x)\right|_{1} ^{t}=1 \text { result: integral converges }
\end{aligned}
$$

and since $f(x) \geq g(x)$ for large x, the original integral converges.
Example $\quad I=\int_{0}^{\infty}\left(\left[1 /\left(x-e^{-x}\right)\right] d x\right.$ here $\left.f(x)=1 /\left(x-e^{-x}\right)\right]$
Will this original integral converge or diverge? Note that the term e^{-x} dominates in the denominator. So it appears that the integral probably diverges. i.e.

Pick $g(x)=1 / x \quad$ Note that $f(x)=1 /\left(x-e^{-x}\right)>1 / x \quad$ so $f(x)>g(x)$

$$
I=\int_{1}^{\infty}\left([1 / x] d x=\left.\lim _{t \rightarrow \infty} \ln x\right|_{1} ^{t}=\infty-\ln 1=\infty\right.
$$

Since $\int g(x)$ diverges (smaller area), the larger area $\int f(x) d x$ will also diverge

