Even More Integrals involving Trig Functions

$$
\begin{aligned}
& \text { In a Nut Shell: Sometimes you just need to express trig functions in terms of their } \\
& \text { basic definition. i.e. Tangent is simply sine divided by cosine. } \\
& \text { Example } \quad \int \tan x d x=\int[\sin x / \cos x] d x \\
& u=\cos x \quad d u=-\sin x d x \\
& \left.\qquad \int \tan x d x=-\int d u / u \quad \text { which is a standard integral, (ln } u\right) \\
& \int \tan x d x=\ln (\cos x)+C \\
& \text { In similar manner } \quad \int \cot x d x=\int[\cos x / \sin x] d x \\
& \qquad u=\sin x \quad d u=\cos x d x \\
& \left.\qquad \cot x d x=\int d u / u \quad \text { which is a standard integral, (ln } u\right) \\
& \int \cot x d x=\ln (\sin x)+C
\end{aligned}
$$

In a Nut Shell: Sometimes you may need special tricks such as multiplying and dividing by the same function followed by a substitution.

Example $\int \sec \mathrm{xdx}$
Multiply and divide $\sec \mathrm{x}$ by $(\sec \mathrm{x}+\tan \mathrm{x})$
and let $u=\sec x+\tan x, \quad d u=\left(\sec x \tan x+\sec ^{2} x\right) d x$
So integral becomes $\int d u / u=\ln |u|+C$
$\int \sec \mathrm{xdx}=\ln |\sec \mathrm{x}+\tan \mathrm{x}|+\mathrm{C}$
Use similar strategy for $\int \csc \mathrm{x} d \mathrm{dx}$ (don't forget - sign)
$\int \csc x d x=-\ln |\csc x+\cot x|+C$

