Vectors - Addition, Dot Product, Direction Cosines, Projections

In a Nut Shell: Vectors have magnitude and direction such as velocity and acceleration. Vectors can be added, subtracted, and multiplied. There are two types of vector multiplication. They are the scalar (or dot) product and the vector product.

Vector Addition $\quad \mathbf{U}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right), \quad \mathbf{V}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$

1-2-3 rectangular Cartesian coordinates
Let
u_{1} be the component of U along the 1 axis; v_{1} be the component of V along the 1 axis
u_{2} be the component of U along the 2 axis; v_{2} be the component of V along the 2 axis
u_{3} be the component of U along the 3 axis; v_{3} be the component of V along the 3 axis
Then by vector addition (you add the components):

$$
\mathbf{U}+\mathbf{V}=\left(u_{1}+\mathrm{v}_{1}, \mathbf{u}_{2}+\mathrm{v}_{2}, \mathrm{u}_{3}+\mathrm{v}_{3}\right)
$$

Magnitude of a vector $\mathbf{U}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$

$$
\mathrm{U}=\sqrt{ }\left(\mathrm{u}_{1}^{2}+\mathrm{u}_{2}^{2}+\mathrm{u}_{3}^{2}\right) \quad \text { (square root of the sum of its squares) }
$$

Unit Vector, $\mathbf{e}_{\mathbf{U}}$, is the vector divided by its magnitude. $\quad \mathbf{e}_{\mathbf{U}}=\mathbf{U} /|\mathbf{U}|=\mathbf{U} / \mathrm{U}$

Definition of the Base Unit Vectors - $\mathbf{i}, \mathbf{j}, \mathbf{k}$ (along axes $\mathbf{1 , 2 , 3)}$

$$
\mathbf{i}=(1,0,0) \mathbf{j}=(0,1,0), \quad \mathbf{k}=(0,0,1)
$$

Definition of Dot Product of Two Vectors $\quad \mathbf{U}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ and $\quad \mathbf{V}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$
$\mathbf{U} \cdot \mathbf{V}=\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \quad$ The result of the dot product is a scalar value.

Interpretation of Dot Product Let θ be the angle between \mathbf{U} and \mathbf{V}. $\mathbf{U} \cdot \mathbf{V}=|\mathbf{U}| \quad|\mathbf{V}| \cos \theta \quad$ So $\quad \cos \theta=\mathbf{U} \cdot \mathbf{V} /|\mathbf{U}| \mid \mathbf{V}$

One can use this dot product to calculate the angle between a vector \mathbf{U} and each coordinate axis, x, y, and z . Call them $\theta_{\mathrm{x}}, \theta_{\mathrm{y}}, \theta_{\mathrm{z}}$. Then the cosine of these angles are called the "direction cosines" . i.e.

$$
\begin{aligned}
& \cos \theta_{\mathrm{x}}=\mathbf{U} \cdot \mathbf{i} /|\mathbf{U}| \quad|\mathbf{i}|=\mathrm{u}_{1} /|\mathbf{U}|, \quad \cos \theta_{\mathrm{y}}=\mathbf{U} \cdot \mathbf{j} /|\mathbf{U}| \quad|\mathbf{j}|=\mathrm{u}_{2} /|\mathbf{U}| \\
& \cos \theta_{\mathrm{z}}=\mathbf{U} \cdot \mathbf{k} /|\mathbf{U}| \quad|\mathbf{k}|=\mathrm{u}_{3} /|\mathbf{U}|
\end{aligned}
$$

Example of a Dot Product

Note: $\mathbf{i} \cdot \mathbf{i}=1, \quad \mathbf{j} \cdot \mathbf{j}=1, \mathbf{k} \cdot \mathbf{k}=1, \quad \mathbf{i} \cdot \mathbf{j}=0, \quad \mathbf{i} \cdot \mathbf{k}=0, \quad \mathbf{j} \cdot \mathbf{k}=0$
Let $\mathbf{U}=3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$ and $\mathbf{V}=-\mathbf{i}+\mathbf{j}-6 \mathbf{k}$
$\mathbf{U} \cdot \mathbf{V}=(3)(-1)+(4)(1)+(5)(-6)=-31 \quad($ scalar result $)$

In a Nut Shell: The scalar projection of a vector, \mathbf{U}, in the direction of another vector,
\mathbf{V}, is just the component of \mathbf{U} along \mathbf{V}. Its symbol is, compv \mathbf{U}.

$$
\operatorname{comp}_{\mathbf{v}} \mathbf{U}=\mathbf{U} \cdot \mathbf{V} /|\mathbf{V}|
$$

Note: The result is a scalar. $\mathbf{U} \cdot \mathbf{V} /|\mathbf{V}|=(\mathrm{U}) \cos \theta(\mathrm{V}) /|\mathbf{V}|=\mathrm{U} \cos \theta$
Here θ is the angle between the vectors \mathbf{U} and \mathbf{V}.

Note: For two vectors in the $\mathrm{x}-\mathrm{y}$ plane the component of U along V is $\mathrm{U} \cos \theta$ as shown below. A similar result holds for vectors in three dimensions, $\mathrm{x}-\mathrm{y}-\mathrm{z}$.

In a Nut Shell: The vector projection of a vector, \mathbf{U}, in the direction of another vector, \mathbf{V}, is just the component of \mathbf{U} in the direction of \mathbf{V} times the unit vector along \mathbf{V}. The symbol for the vector projection of \mathbf{U} along \mathbf{V} is $\operatorname{proj}_{\mathbf{v}} \mathbf{U}$.

$$
\operatorname{proj}_{\mathbf{V}} \mathbf{U}=[(\mathbf{U} \cdot \mathbf{V}) /|\mathbf{V}|] \mathbf{e}_{\mathbf{V}}
$$

Note: The result is a vector.
A unit vector in the direction of \mathbf{V} is $\mathbf{V} /|\mathbf{V}|=\mathbf{e}_{\mathbf{v}}$
So $\quad \operatorname{proj}_{\mathbf{v}} \mathbf{U}=[(\mathrm{U} \cos \theta)][\mathbf{V} /|\mathbf{V}|]=[(\mathbf{U} \cdot \mathbf{V}) /|\mathbf{V}|] \mathbf{e}_{\mathbf{V}}$

Example: Find the scalar projection of U and of V given by:

$$
\begin{aligned}
& \mathbf{U}=\mathbf{i}+\mathbf{j}+\mathbf{k} \quad \text { and } \quad \mathbf{V}=3 \mathbf{i}+4 \mathbf{j} \\
& \mathrm{~V}=\sqrt{ }\left[(3)^{2}+(4)^{2}\right]=\sqrt{ } 5 \\
& \operatorname{comp}_{\mathbf{V}} \mathbf{U}=\mathbf{U} \cdot \mathbf{V} / \mathrm{V}=[(1)(3)+(1)(4)] / 5=7 / 5 \text { (result) }
\end{aligned}
$$

Example: Find the vector projection of \mathbf{U} onto \mathbf{V} given by:

$$
\mathbf{U}=\mathbf{i}+\mathbf{j}+\mathbf{k} \quad \text { and } \quad \mathbf{V}=3 \mathbf{i}+4 \mathbf{j}
$$

$$
V=\sqrt{ }\left[(3)^{2}+(4)^{2}\right]=5
$$

Recall $\operatorname{proj}_{\mathbf{v}} \mathbf{U}=(\mathbf{U} \cdot \mathbf{V}) \mathbf{e}_{\mathbf{v}}$

$$
\begin{aligned}
\mathbf{U} \cdot \mathbf{V} & =(1)(3)+(1)(4)=7, \quad \mathbf{U} \cdot \mathbf{V} / \mathbf{V}=7 / 5 \\
\mathbf{e}_{\mathbf{v}} & =(3 \mathbf{i}+4 \mathbf{j}) / 5 \\
\operatorname{proj}_{\mathbf{v}} \mathbf{U} & =(\mathbf{U} \cdot \mathbf{V}) \mathbf{e}_{\mathbf{v}}=(7 / 25)[3 \mathbf{i}+4 \mathbf{j}] \text { (result) }
\end{aligned}
$$

Example: Determine which of the following expressions are meaningful.

1. (A•B) $\cdot \mathbf{C} \quad$ Not meaningful $\mathbf{A} \cdot \mathbf{B}$ is a scalar and scalar product is between two vectors.
2. (A•B) C Meaningful since $\mathbf{A} \cdot \mathbf{B}$ is a scalar and you can multiply a scalar times a vector.
3. $(\mathbf{A} \cdot \mathbf{B})+\mathbf{C}$ Not meaningful since $\mathbf{A} \cdot \mathbf{B}$ is a scalar and \mathbf{C} is a vector
