Vector and Scalar Triple Products

In a Nut Shell: The vector product of two vectors results in a new vector perpendicular to original two vectors. The direction of the new vector is conveniently determined using the "right hand rule" as described below.

For a rectangular coordinate system point the fingers of your right hand in the direction of the x -axis. Then rotate your fingers towards the y -axis. The result of a vector product is another vector (your thumb) perpendicular to the two original vectors (along the z -axis).
thumb points in the
direction of z

The vector product, also called the cross product, of $\mathbf{U}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ and
of $\mathbf{V}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$ is define by the 3×3 determinant below as:
i $\quad \mathbf{j} \quad k$
$\mathbf{U} \times \mathbf{V}=\operatorname{det} \quad u_{1} \quad u_{2} \quad u_{3}$
$\begin{array}{lll}\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}\end{array}$
with $\mathbf{i}, \mathbf{j}, \mathbf{k}$ in the first row $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$ in the second row, and $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ in the third row

Example: Evaluate the vector product, $\mathbf{U} \times \mathbf{V}$, for the vectors

$$
\mathbf{U}=3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k} \text { and } \mathbf{V}=\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}
$$

Use the "right hand rule" to rotate the vector \mathbf{U} into \mathbf{V}. The resultant of this product
is a new vector, \mathbf{W}, perpendicular to \mathbf{U} and \mathbf{V}.
Strategy: Use a 3×3 determinant (det) to calculate the vector product of \mathbf{U} and \mathbf{V} with \mathbf{i}, \mathbf{j}, and \mathbf{k} in the first row, \mathbf{U} in the second row and \mathbf{V} in the third row.

$\mathbf{W}=\mathbf{U} \times \mathbf{V}=\operatorname{det}$	i		j	k		
	3		4	5		
	1		-2	-3		
45		3	5	+ \mathbf{k} det ${ }^{3}$		
$\mathbf{U} \times \mathbf{V}=\mathbf{i d e t}$	det					
$\mathbf{U} \times \mathbf{V}=\mathbf{i}[(4)(-3)-(-2)(5)]-\mathbf{j}[(3)(-3)-(1)(5)]+\mathbf{k}[(3)(-2)-(1)(4)]$						
$\mathbf{W}=-2 \mathbf{i}+14 \mathbf{j}-1$			(result for vector product)			

Note: \mathbf{W} is a new vector that is perpendicular to vectors \mathbf{U} and \mathbf{V} so the dot product of \mathbf{W} with both \mathbf{U} and \mathbf{V} should be zero.

Check: $\quad \mathbf{W} \cdot \mathbf{U}=(-2 \mathbf{i}+14 \mathbf{j}-10 \mathbf{k}) \cdot(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k})$

$$
\mathbf{W} \cdot \mathbf{U}=(-2)(3)+(14)(4)+(-10)(5)=0
$$

Also $\mathbf{W} \cdot \mathbf{V}=(-2)(1)+(14)(-2)+(-10)(-3)=0$

Magnitude of the Vector Product (Cross Product) - is a scalar

$|\mathbf{U} \times \mathbf{V}|=|\mathbf{U}||\mathbf{V}| \sin \theta \quad$ where θ is the angle between vectors \mathbf{U} and \mathbf{V}
Note: $|\mathbf{U} \times \mathbf{V}|$ represents the area of a parallelogram with sides \mathbf{U} and \mathbf{V}

$$
\text { where the angle between } \mathbf{U} \text { and } \mathbf{V} \text { is } \theta
$$

See the figure below.

The Scalar Triple Product, T, is defined as follows:
$\mathrm{T}=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ Note: the result is a scalar $|\mathbf{b} \times \mathbf{c}|=\mathrm{h}$

$$
\mathrm{T}=\operatorname{det} \quad \begin{array}{ccc}
\mathrm{a}_{1} & a_{2} & a_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\
\mathrm{c}_{1} & \mathrm{c}_{2} & c_{3}
\end{array}
$$

This triple product yields the volume of a parallelepiped with sides \mathbf{a}, \mathbf{b}, and \mathbf{c}

Also, the volume of a pyramid (sides \mathbf{a}, \mathbf{b}, and \mathbf{c}) is $1 / 6$ the volume of the parallelepiped.

