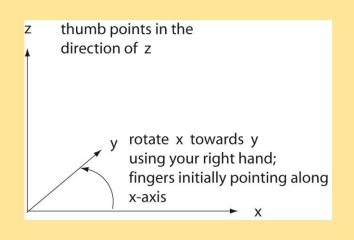
Vector and Scalar Triple Products

In a Nut Shell: The **vector product** of two vectors results in a new vector perpendicular to original two vectors. The direction of the new vector is conveniently determined using the **"right hand rule"** as described below.

For a rectangular coordinate system point the fingers of your right hand in the direction of the x-axis. Then rotate your fingers towards the y-axis. The result of a vector product is another vector (your thumb) perpendicular to the two original vectors (along the z-axis).

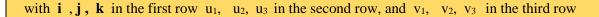


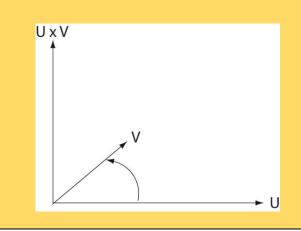
The vector product, also called the cross product, of $\mathbf{U} = (u_1, u_2, u_3)$ and

of $\mathbf{V} = (v_1, v_2, v_3)$ is define by the 3 x 3 determinant below as: **i j k**

 $\mathbf{U} \ \mathbf{x} \ \mathbf{V} \ = \ \det \ u_1 \qquad u_2 \qquad u_3$

 v_1 v_2 v_3





Example: Evaluate the vector product, **U** x **V**, for the vectors

$$\mathbf{U} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$$
 and $\mathbf{V} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$

Use the "right hand rule" to rotate the vector \mathbf{U} into \mathbf{V} . The resultant of this product

is a new vector, W, perpendicular to U and V.

Strategy: Use a 3 x 3 determinant (det) to calculate the vector product of **U** and **V**

with \mathbf{i} , \mathbf{j} , and \mathbf{k} in the first row, \mathbf{U} in the second row and \mathbf{V} in the third row.

i j k W = U x V = det 3 4 5 1 -2 -3 U x V = i det 4 5 3 5 3 4 -2 -3 1 -3 1 -2

 $\mathbf{U} \times \mathbf{V} = \mathbf{i} [(4)(-3) - (-2)(5)] - \mathbf{j} [(3)(-3) - (1)(5)] + \mathbf{k} [(3)(-2) - (1)(4)]$ $\mathbf{W} = -2\mathbf{i} + 14\mathbf{j} - 10\mathbf{k} \qquad \text{(result for vector product)}$

Note: W is a new vector that is perpendicular to vectors U and V so the dot product of W with both U and V should be zero.

Check: $\mathbf{W} \cdot \mathbf{U} = (-2\mathbf{i} + 14\mathbf{j} - 10\mathbf{k}) \cdot (3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k})$

$$\mathbf{W} \cdot \mathbf{U} = (-2)(3) + (14)(4) + (-10)(5) = 0$$

Also $\mathbf{W} \cdot \mathbf{V} = (-2)(1) + (14)(-2) + (-10)(-3) = 0$

Magnitude of the Vector Product (Cross Product) - is a scalar

 $|\mathbf{U} \times \mathbf{V}| = |\mathbf{U}| |\mathbf{V}| \sin \theta$ where θ is the angle between vectors \mathbf{U} and \mathbf{V}

Note: $|\mathbf{U} \times \mathbf{V}|$ represents the area of a parallelogram with sides \mathbf{U} and \mathbf{V}

where the angle between **U** and **V** is θ

See the figure below.

