
  Heat Conduction in a Thin Rod               
 

In a Nut Shell:  Heat conduction in a thin rod  is governed by the following 

partial differential equation: 

                                                 ∂u/∂t   =   k ∂2u/∂x2     ----------------------  (1) 

 

     where     u  =  u(x,t)  =  the temperature distribution in the rod 

                    x  =  the position along the rod 

                    t  =  the time at which the temperature at x is  u(x,t)   

    and 

                     k  is the thermal diffusivity of the rod   (material property) 

 

The desired outcome is to predict the temperature distribution, u(x,t), in the rod  

subject to the boundary (end) conditions given an initial temperature distribution  

in the rod, u(x,0)  =  f(t). 

 

 

Since the partial differential equation is second order in its derivative with respect to 

 

x, you will need two boundary conditions.  The p.d.e is first order in its derivative 

 

with respect to t, so you need one initial condition.  See the figure below. 

 

 

 

                      
  

 

 

 

The common boundary conditions at the ends of the rod are as follows: 

 

a. Specified temperature at an end  x = 0          u(0,t) = To 

b. Specified temperature at end x = L               u(L,t) = T1 

c. Insulated condition at x = 0                          ∂u(0,t)/ ∂x  =  0 

d. Insulated condition at x = L                          ∂u(L,t)/ ∂x  =  0 

 

or any combination of these boundary conditions.  i.e.  If the temperature is specified 

at x = L and the rod is insulated at  x = 0, then the appropriate boundary conditions 

are   ∂u(0,t)/ ∂x  =  0  and  u(L,t)  = 0.  Other linear combinations might be like. 

 

      C1 u(0,t)  +  C2 ux (0,t)  =  F(t)    and   C3 u(L,t)  +  C4 ux (L,t)  =  G(t)     

 

where   C1 ,  C2 ,  C3 ,  and  C4  are known constants  and  where  ux   =  ∂u/∂x  . 

 



 

Strategy:  Since the heat conduction equation involves two independent variables,  x  and  t, 

apply the method of “separation of variables”  to separate out the spatial variable,  x, from  

the time variable,  t. 

 

 

Method of Separation of Variables: 

 

 

    Assume       u(x,t)  =  X(x) T(t)    (for separation of variables) 

 

 Put this expression into the heat conduction equation,  

 

                                                 ∂u/∂t   =   k ∂2u/∂x2      

 

 Take the value for the thermal conductivity of the rod,  k  =  1 . 

 The table below contains the calculations. 

 

 

 

                  X dT/dt   =  d2X/dx2  T    

 

 

             Let   d2X/dx2  =  X’’   and  dT/dt  =   T* 

 

Then divide both sides by  X T  to separate the variables:    

 

                                      T*/T  =  X’’/X   

 

Since T*/T  depends only on  t  and  X’’/X  depends only on x, the only way 

 

T*/T  could equal  X’’/X  is for both to  be constant. 

 

   Let   K  =  constant  =   separation constant  =  ˗  λ 

 

So                      T*/T  =  X’’/X  =  ˗  λ 

    

 

 

Result:  For solution of heat conduction in a thin rod, you need to solve an 

 
eigenvalue problem of the form: 

 
  

                
       X’’  +  λ X  =  0    
  
  
        T*  +  λ T  =  0 
  
 

  
 

 



 

Example:  Find the temperature distribution in a thin rod for: 

 

               ∂u/∂t   =   2 ∂2u/∂x2     -------------------------------------------------  (1) 

 

                ux  (0,t)  =  ux (3,t)  =  0                             (boundary conditions) 

 

               u(x,0)  =  4 cos (2πx/3)  -  2 cos(4πx/3)     (initial temperature distribution) 

 

 

Note:  The boundary conditions listed above simulate insulation (no heat transfer) at 

           each end of the thin rod.  See the figure below. 

 

            The initial condition represents the temperature distribution throughout the 

            thin rod at the beginning, t = 0. 

 

            The objective is to find the distribution of temperature, u(x,t), in the thin rod 

            for any location, x, and for any time, t. 

 

 

 

 

                    
 

 

 

 

Strategy:  Apply separation of variables. 

 

Let    u(x,t)  =  X(x) T(t)  ,   ut  =  XT’ ,  uxx   =  X’’              put into (1) above 

 

So        XT’  =  2 X’’T   or    X’’/X    =  T’/2T  =   K   =   separation constant  =  - λ    

 

                               X’’ + λ  X  =  0     and   T’  +  2 λ T  =  0 

 

This eigenvalue problem has three possible eigenvalues.   λ  could be positive,  negative, 

or zero. 

 

 

Case 1:  λ = 0       Then   X’’  =  0  and   X(x)  =  Ax  +  B,    X’(x)  =  A 

 

X’(0) =  0  gives  A  =  0  leaving  X(x)  =  B    X’(x) = 0 

 

 

Result for case 1:      λ = 0   (eigenvalue)   and  Xo(x)  =  1   (eigenvector) 

 



 

Case 2:    λ <  0   Let  :  λ = ˗  α2   then 

 

     X’’  - α2   X  =  0    so  X(x)  =  A cosh α x  +  B sinh α x     and 

 

      X’(x)  =  α A sinh α x  +  α B cosh α x   

 

      X’(0)  =  α B    and since  α ≠ 0   B = 0 

 

      X’(3)  =  α A  sinh 3 α    but  α ≠ 0  and  sinh 3 α   ≠ 0   A = 0 

 

So   A  =  B  =  0       so   X(x)  =  0 

 

 

Result for Case 2:  No eigenvalues nor eigenvectors. 

 

 

 

Case 3:    λ >  0   Let  :  λ =  α2   then     (λ  are eigenvalues) 

 

       X’’ + α2  X  =  0       where  X’(0)  =  X’(3)  =  0 

 

       X  =  A cos αx   +   B sin αx 

 

      X’  =  - Aα sin αx  +  Bα cos αx 

 

      X’(0)  =  Bα  =  0  so  B  =  0  since  α ≠ 0 

 

      X’(3)  =  - Aα sin 3 α   =  0   For a nontrivial solution  A  ≠ 0   

 

                   So    3 α   =  n π  or     α   =  n π /3 

 

 

   Result for Case 3:    λ  =  (nπ/3)2     (eigenvalues) 

 

and         

 

                                     Xn(x)  =  cos (nπx /3)          (eigenfunctions) 

 

 

Next solve the d.e. involving time.    

 

  

                          T’ + 2 α2 T  =  0     where  α2  =  ( n π / 3 )2  

 

   Assume      T(t)  =  C ert   and   T ’  =  C rert    

 

 

   Substitute these expressions into the d.e. 

 

 

   Then            C ert   [r  +  2 α2 ]  =  0,   r  = ˗ 2 α2   

 

    Tn (t) =    exp [˗ 2 ( nπ/3 )2  t ]  =  exp[˗  2n2π2  t / 9 ] 

 



Recall that the “product” solution has the form 

 

                           un(x,t)  =    Tn(t) Xn(x)  

 

which gives                  un(x,t)  =    exp[- 2n2π2 t / 9 ] cos (nπx /3) 

 

and recall                     uo(x,t)  =    1 

 

So the trial solution for the temperature distribution in the rod is: 

 

                               ∞ 

     u(x,t)  =  ao  +   ∑ an exp[˗ 2n2π2 t /9] cos( nπx /3)     -----------------------------  (2) 

                             n = 1  

 

 

Next apply the initial condition (the initial temperature distribution)  that 

 

                  u(x,0)  =  4 cos (2πx/3)  -  2 cos(4πx/3)     

                                 ∞ 

     u(x,0)  =  ao   +   ∑ an cos(nπx /3)   =  4cos (2πx/3) - 2 cos(4πx/3)   

                               n = 1 

 

 

Since the initial temperature distribution involves  cos(2πx/3) and cos(4πx/3)   

 

the only terms in the Fourier cosine series that are nonzero should be for 

 

n  =  2  and  n  =  4 with  a2  =  4  and  a 4  =  ˗ 2      To show this calculate the 

 

Fourier coefficients.  This calculation is shown below. 

 

 

              P  =  period  =  6,   P  =  2L  where   L  =  3 

                    6 

  ao  =  (1/3) ∫ 4cos(2πx/3) - 2 cos(4πx/3)  dx   =  0 

                    0 

 

 

                    6 

  an  =  (1/3) ∫ [4cos(2πx/3) - 2 cos(4πx/3)] cos(nπx /3) dx 

                    0 

Next let    u  =  πx/3,   du  =  π dx/3    and apply the orthogonality conditions:             

 

                   u  = 2π                                                                    0   if  n  ≠  2  or  4          

    an  =  (1/ π) ∫ [4cos(2u) ˗  2 cos(4u)] cos nu  du  =     

                   u  = 0                                                                      π   if  n  = 2 or  4 

    

                   u  = 2π                                                                        

  a2  =   (1/ π) ∫ [4cos(2u)] cos nu  du  =   4                    if  n  =  2 

                  u  = 0                                                                      

 

                    u  = 2π                                                              

  a4  =    (1/ π) ∫ [-2 cos(4u)] cos nu  du  =  ˗ 2               if  n  =  4 

                    u  = 0                                                               

 



 

Put these coefficients into (2)  for the final temperature distribution. 

 

      u(x,t)  =  4exp[-8π2 t /9]cos(2πx/3)  -  2 exp[-32π2 t /9] cos(4πx/3)        (result) 

                                                                      

 

Example:  A thin copper 50 cm long with both ends and lateral surfaces insulated.  The  

 initial temperature in the rod  u(x,0)  =  2x.   

 

Find the temperature in the rod u(x,t). 

 

 Determine the temperature at  x = 10 cm after 1 min, and also the time 

 it will take for the temperature at  x = 10 cm to reach 45o C. 

 

 

For one dimensional heat conduction in a thin rod: 

 

                                    ∂u/∂t   =   k ∂2u/∂t2         ---------------------------------  (1) 

 

     here        u  =  u(x,t)  =  the temperature in the rod 

                    x  =  the position in the rod 

                    t  =  the time at which the temperature at x is  u(x,t)   

    and 

                     k  is the thermal diffusivity of copper  =  1.15  cm2/sec  (from Table) 

 

    Let each end be insulated (no heat transfer).  Then, 

 

                                ux(0, t)  =  ux(50, t)  =  0       -------------------------------  (2) 

 

    Let the initial temperature distribution be linear such as: 

 

                                u(x, 0)  =  2x   -----------------------------------------------  (3) 

 

 

 

                          
 

 

 

Use separation of variables approach to find eigenvalues and eigenfunctions. 

 

So assume       u(x,t)  =  X(x) T(t)    and substitute into eq.(1). 

 

Use separation of variables approach to find eigenvalues and eigenfunctions. 

 

So assume       u(x,t)  =  X(x) T(t)    and substitute into eq.(1). 

 



 

 

Strategy:  Start with   d2X/dx2  =  X’’   and  dT/dt  =   T’   So separation of variables gives 

  

                  X dT/dt   =  k d2X/dx2  T   ;    X’’/ X   =  T’/ kT  = constant  =  ˗ λ 

 

 

 

 

Recall for  λ  = 0  (from the first example)  λo = 0  and  Xo(x) = 1   

 

and there were no eigenvalues nor eigenfunctions if  λ  < 0. 

 

 

 

 So the case of interest is for    λ > 0,       λ  =  α2 

 

                     So    X’’ + α2  X  =  0    subject to  X’(0)  =  X’(50)  =  0 

 

            X  =  A cos αx  +  B sin αx;    X’  =  - αA sin αx  +  αB cos x 

      

    X’(0)  =  0  =  αB;  since  α  ≠  0,   B  =  0 

 

    X’(50)  =  0  =  ˗ αA sin 50α;    since α ≠  0,   for a nontrivial solution  B  ≠  0 

 

Hence     sin 50α  =  0  and    50α  =   nπ    n  =  1, 2, 3,        α  =  nπ /50   

 

 

and                                   λ  =  n2π2 /2500  =  eigenvalues;   

 

                                       Xn  =  cos(nπx/50)  =  eigenfunctions 

 

 

 

Strategy:  Use these eigenvalues for the time dependent relation: 

 

 

                       T’  +  k α2 T  =  0     Assume an exponential solution:      T  =  C ert   

 

      So      C ert  (r  
 +  k α2  )  =  0   and    r  =  - k α2     

 

       Tn(t)  =   exp(-n2π2 kt /2500  =   exp[-n2π2 (1.15)t /2500]  

 

Next apply the “product” solution    un(x,t)  =  Tn(t) Xn(x) 

 

          un(x,t)  =  exp[-n2π2 (1.15)t /2500] cos(nπx/50)   

 

                            ∞ 

    u(x,t)  =  ao  +  ∑ an exp[-n2π2 (1.15)t /2500] cos(nπx/50)   

                           n = 1 

                                                                                     ∞ 

The initial condition gives      u(x, 0)  =  2x   =   ao + ∑ an cos(nπx/50)   

                                                                                  n = 1 

 

 



 

Strategy:  Calculate the Fourier cosine coefficients.  

                  

                            

                                 50 

             ao  =  (2/50) ∫ 2x dx  =  100 

                                 0 

 

                                       50 

                an  = (2/50) ∫ 2x cos(nπx/50)dx  =  100     (integrate by parts) 

                                       0   

 

                 u  =  (4/50)x                       dv  =  cos(nπx/50) 

 

               du  =  (4/50)dx                       v  =  (50/nπ)sin(nπx/50)          

 

                                           50      50                                   50 

   an  =  (4/nπ)sin(nπx/50) |      ˗    ∫(4/nπ)sin(nπx/50)  =  ˗  ∫(4/nπ)sin(nπx/50)   

                                           0         0                                     0 

                                                                            50 

                      an  =   (4/nπ)(50/nπ)cos(nπx/50) |    =   200/(/n2π2) [ cos nπ  ˗   1] 

                                                                            0 

 

                      an  =  200/(/n2π2) [ (˗ 1)n  -  1] 

 

   So  an  =  0   for   n even  and   ˗ 400/(/n2π2)   for  n  odd 

 

 

  
    u(x,t)  =  100/2  -  ∑ 400/(/n2π2)    exp[-n2π2 (1.15)t /2500] cos(nπx/50)     (result) 
                                       n odd   
                   

 

Next calculate the temperature in the rod at  x = 10 cm after one minute. 

 

 

    u(x,t)  =  100/2 ˗ ∑ 400/(/n2π2) exp[-n2π2 (1.15)t /2500] cos(nπx/50)   

                              n odd    

 

  Now let  x  =  10,  t  =  1 min  =  60 sec 

 

 

Take a one-term approximation since exponential term drops rapidly. 

 

   u(10, 60)  =  50  -  400/(/π2) exp[-π2 (1.15)60/2500] cos(nπ/5)   

 

   u(10, 60)  =  50 -  24.9698  =  25.03o C    If we take a second term  ( n = 3) 

 

    Term  2  =  400/(/9π2) exp[-9π2 (1.15)60/2500] cos(3π/5)      

 

    Term  2  =  +0.1199 

 

So    u(10, 60)   =  50 -  24.9698 +  0.1199  =  25.15o C    

 

 



 
Finally, determine the time when the temperature is  45o C  at  x  =  10  in the rod. 

 

where           

                 u(x,t)  =  100/2  ˗ ∑ 400/(/n2π2) exp ˗ n2π2 (1.15) t /2500] cos(nπx/50)   

                                           n odd    

 

 

Approximation:     Consider one term only.  (n = 1) 

 

                                    

    u(10, t*)  =   45  =  50   ˗    400/(/π2) exp[-π2 (1.15) t* /2500] cos(π/5)   

 

-  5  =  ˗  400/(/π2) exp[-π2 (1.15)t* /2500] cos(π/5)   

 

 

                       [ 5π2 /400] / cos(π/5)    =  exp[˗  π2 (1.15) t* /2500] 

 

 

Now in order to solve for  t* ,  take the logarithm of both sides. 

 

           ln [ 5π2 /400 cos(π/5)]  =  ˗  π2 (1.15)t* /2500 

 

 

 t*  = (2500/1.15π2)  ln{400cos(π/5)/ 5π2} =  (2500/1.15π2) ln {80cos(π/5)/π2 } 

 

 

    t*  =   414.23 sec  =  6 min 54 sec                (result) 

 

 


