Background: Recall that Green's theorem gives the relationship between a line integral around a simple closed curve, C , and a double integral over the plane region R bounded
by C. See the figure below.

Also recall that the "divergence form" of Green's theorem is

$$
\int_{\mathrm{C}} \mathbf{F} \cdot \mathbf{n} \mathrm{ds}=\iint_{\mathrm{R}} \operatorname{div} \mathbf{F} \mathrm{dA}
$$

where R is a region in the $x-y$ plane enclosed by a piecewise-smooth, positively oriented (keep region to your left as you travel around the simple closed curve C)
$\mathbf{F}(\mathrm{x}, \mathrm{y})$ is a vector field

$$
\mathbf{F}=\mathrm{P}(\mathrm{x}, \mathrm{y}) \mathbf{i}+\mathrm{Q}(\mathrm{x}, \mathrm{y}) \mathbf{j},
$$

$\mathbf{n}(\mathrm{x}, \mathrm{y})$ is a unit vector to the curve C
ds $=$ arc length along curve C
$\operatorname{div} \mathbf{F}=\partial \mathbf{P} / \partial \mathrm{x}+\partial \mathbf{Q} / \partial \mathrm{y}$
$\mathrm{dA}=$ element of area in R

In a Nut Shell: The Divergence Theorem extends the divergence form of Green's theorem from two to three dimensions.

In this case the line integral around a closed curve, C , is replaced by a surface integral around a closed surface, S , and the area integral involving the divergence of the vector field \mathbf{F} is replaced by the volume integral of the divergence of the vector field, \mathbf{F}.

Method 1: Evaluate $\iint \mathbf{F} \cdot \mathbf{n}$ dS directly over the surface S

Method 2:

Transform the double integral on $S \iint \mathbf{F} \bullet \mathbf{n} \mathrm{dS}$
S
to a surface integral using $\mathbf{n}=\left(\mathbf{r}_{u} \times \mathbf{r}_{\mathbf{v}}\right) /\left|\left(\mathbf{r}_{\mathbf{u}} \times \mathbf{r}_{\mathbf{v}}\right)\right|$
which gives

$$
\iint_{S} \mathbf{F} \bullet\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) /\left|\left(\mathbf{r}_{u} \times \mathbf{r}_{\mathbf{v}}\right)\right| \mathrm{dS}
$$

and $\mathrm{dS}=\left|\left(\mathbf{r}_{\mathrm{u}} \times \mathbf{r}_{\mathrm{v}}\right)\right| \mathrm{dA}$
to obtain the final result

$$
\int_{S} \int_{\mathbf{F}} \bullet \mathbf{n} \mathrm{dS}=\iint_{\mathrm{R}} \mathbf{F} \bullet\left(\mathbf{r}_{\mathbf{u}} \times \mathbf{r}_{\mathbf{v}}\right) \mathrm{dA}
$$

where $d A$ is the element of area on R, on the $u-v$ plane

Method 3:

Evaluate $\iint_{\mathrm{E}} \int_{\operatorname{div}} \mathbf{F} \mathrm{dV}$ directly over the volume E

Side note: Some mathematicians refer to the Divergence Theorem as Gauss' Theorem.

Example: The force, \mathbf{F}, acts on the boundary, S, of a closed surface bounded by the paraboloid $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ and the plane $\mathrm{z}=4$. Use the Divergence Theorem to evaluate the "flux" of \mathbf{F} acting over the boundary of S .

Note: flux $=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{dS}=\iint_{\text {Vo }} \int \operatorname{div} \mathbf{F} \mathrm{dV} \quad$ See the figure below.

$$
\text { flux }=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{dS}=\iint_{\mathrm{Vo}} \int_{\mathrm{S}} \operatorname{div} \mathbf{F} \mathrm{dV}
$$

With $\quad \mathbf{F}=\mathrm{x} \mathbf{i}+\mathrm{y} \mathbf{j}+3 \mathbf{k}, \quad \operatorname{div} \mathbf{F}=1+1+0=2$
So flux $=\quad \iiint 2 \mathrm{dV}$ Next use cylindrical coordinates to evaluate this volume integral. Vo

$$
\begin{aligned}
& d V=r d r d \theta d z \\
& \text { flux }=2 \int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=2} \int_{z=r^{2}}^{z=4} d z r d r d \theta=2 \iint_{\theta=0}^{\theta=2 \pi r=2}\left(4-r^{2}\right) r d r d \theta= \\
& \text { flux }=2 \int_{\theta=0}^{\theta=2 \pi}\left(4 \mathrm{r}^{2} / 2-\mathrm{r}^{4} / 4\right) \left\lvert\, \begin{array}{c}
2 \\
\mathrm{~d} \theta \\
0
\end{array} \quad \begin{array}{c}
\theta=2 \pi \\
4 \mathrm{~d} \theta=16 \pi \\
\theta=0
\end{array} \quad\right. \text { (result for flux) }
\end{aligned}
$$

Example: Show that the "flux" of the vector field $\mathbf{F}=(3 y \cos z) \mathbf{i}+\left(x^{2} e^{z}\right) \mathbf{j}+(x \sin y) \mathbf{k}$ is zero over any closed surface, S , enclosing a solid region, Vo.

$$
\text { flux }=\quad \iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{dS}=\iint_{\text {Vo }} \int \operatorname{div} \mathbf{F} \mathrm{dV}
$$

Now $\operatorname{div} \mathbf{F}=\partial \mathrm{F}_{\mathrm{x}} / \partial \mathrm{x}+\partial \mathrm{F}_{\mathrm{y}} / \partial \mathrm{y}+\partial \mathrm{F}_{z} / \partial \mathrm{z}=(0)+(0)+(0)=0$
So flux $=\iiint(0) d V=0$ (result)

Example: Use the Divergence Theorem to evaluate the surface integral

$$
\iint \mathbf{F} \cdot \mathbf{n} \mathrm{dS} \text { where } \mathbf{F}=\mathrm{xy} \mathbf{i}+\mathrm{xz} \mathbf{j}+\mathrm{yz} \mathbf{k}
$$

S
and \mathbf{n} is the outward normal to the ellipsoid
$x^{2}+4 y^{2}+z^{2}=1$ (Figure on the right)

Thus this surface integral, $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{dS}=\iint_{\mathrm{Vo}} \operatorname{div} \mathbf{F} \mathrm{dV}$
$\operatorname{div} \mathbf{F}=\partial \mathrm{F}_{\mathrm{x}} / \partial \mathrm{x}+\partial \mathrm{F}_{\mathrm{y}} / \partial \mathrm{y}+\partial \mathrm{F}_{z} / \partial \mathrm{z}=\mathrm{y}+\mathrm{y}=2 \mathrm{y}$

Now notice that if $\mathbf{F}=-x y \mathbf{i}+x z \mathbf{j}-\mathrm{yz}$
Then $\operatorname{div} \mathbf{F}=-2 \mathrm{y}=-\operatorname{div} \mathbf{F}$; since the ellipsoid is symmetrical about the plane $y=0$, the value of the surface integral is zero. Direct evaluation of the surface integral yields the same result.

Example: Find the value of the flux of the vector field

$$
\mathbf{F}=2 x y \mathbf{i}+z^{2} y \mathbf{j}+x z \mathbf{k} \quad \text { over the unit cube formed by the coordinate planes }
$$

and the planes $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$
See the figure below.

$$
\text { flux }=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{dS}=\iiint_{\mathrm{Vo}} \operatorname{div} \mathbf{F} \mathrm{dV}
$$

Now $\quad \operatorname{div} \mathbf{F}=\partial \mathrm{F}_{\mathrm{x}} / \partial \mathrm{x}+\partial \mathrm{F}_{\mathrm{y}} / \partial \mathrm{y}+\partial \mathrm{F}_{z} / \partial \mathrm{z}=2 \mathrm{y}+\mathrm{z}^{2}+\mathrm{x}$

$$
\begin{aligned}
& \text { So flux }=\int_{x=0}^{x=1} \int_{y=0}^{y=1} \int_{z=0}^{z=1}\left(2 y+z^{2}+x\right) d z d y d x \\
& \text { flux }=\int_{x=0}^{x=1} \int_{y=0}^{y=1}\left(2 y z+z^{3} / 3+x z\right) \mid d z d y d x=\int_{0}^{x=1} \int_{y=0}^{y=1}(2 y+1 / 3+x) d y d x \\
& \text { flux }=\int_{x=0}^{x=1}\left(y^{2}+y / 3+x y\right) \mid \int_{y=0}^{y=1}=\int_{x=0}^{x=1}(1+1 / 3+x) d x=1+1 / 3+1 / 2 \\
& \text { flux }=6 / 6+2 / 6+3 / 6=11 / 6
\end{aligned}
$$

Alternate solution as a check:

Example: Find the value of the flux of the vector field $\mathbf{F}=2 x y \mathbf{i}+z^{2} y \mathbf{j}+x z \mathbf{k}$ over the unit cube formed by the coordinate planes and the planes $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$ by calculating the surface integral, $\iint \mathbf{F} . \mathbf{n} \mathrm{dS}$. See the figure below.

S

$$
\begin{gathered}
\text { flux }=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{dS}=\iint_{\mathrm{S}_{1}++\mathrm{S}_{6}}^{\int \mathbf{F}} \cdot \mathbf{n} \mathrm{dS} \quad \text { where } \\
\mathbf{n}_{1}=\mathbf{i}, \quad \mathbf{n}_{2}=-\mathbf{i}, \quad \mathbf{n}_{3}=\mathbf{j}, \quad \mathbf{n}_{4}=-\mathbf{j}, \quad \mathbf{n}_{5}=\mathbf{k}, \quad \mathbf{n}_{6}=-\mathbf{k} \\
\mathrm{dS}_{1}=\mathrm{dS}_{2}=\mathrm{dydz}, \quad \mathrm{dS}_{3}=\mathrm{dS}_{4}=\mathrm{dxdz}, \quad \mathrm{dS}_{5}=\mathrm{d} \mathrm{~S}_{6}=\mathrm{dxdy}
\end{gathered}
$$

$$
\text { flux }=\iint_{S_{1}} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{1}} 2 x y d y d z=\int_{y=0}^{y=1} \int_{z=0}^{z=1} 2 y d y d z=1
$$

Since $\mathrm{x}=0$ on $\mathrm{S}_{2} \quad \iint_{\mathrm{S}_{2}} \mathbf{F} \cdot \mathbf{n} \mathrm{dS}=0$
Likewise, $y=0$ on S_{4} and $z=0$ on S_{6} both surface integrals are zero. On $S_{3} y=1 \quad\left(\right.$ and on $\left.S_{5} \quad z=1\right)$

$$
\begin{aligned}
& \text { flux }=\iint_{S_{3}} \mathbf{F} \cdot \mathbf{n d S}=\iint_{S_{3}} z^{2} y d y d z=\int_{x=0}^{x=1} \int_{z=0}^{z=1} z^{2} d x d z=1 / 3 \\
& \text { flux }=\iint_{S_{5}} \mathbf{F} \cdot \mathbf{n d S}=\iint_{S_{5}} x z d x d y=\int_{x=0}^{x=1} \int_{y=0}^{y=1} x d x d y=1 / 2 \\
& \text { flux }=1+1 / 3+1 / 2=11 / 6
\end{aligned} \quad \text { (same result) }
$$

