
Divergence Theorem 

 

 
Background:  Recall that Green's theorem gives the relationship between a line integral  

 

around a simple closed curve, C, and a double integral over the plane region  R  bounded  

 

by C.   See the figure below. 

 

 

 

                                
 

 

 

 
Also recall that the “divergence form” of Green’s theorem is 

 

               ∫ F  .  n  ds   =   ∫  ∫  div F dA 

               C                       R 

 

where  R is a region in the x-y plane enclosed by a piecewise-smooth, positively 

oriented (keep region to your left as you travel around the simple closed curve C) 

 

F(x,y)  is a vector field                            F  =  P(x,y) i   +  Q(x,y) j,   

n(x,y) is a unit vector to the curve  C 

ds  =  arc length along curve C 

div F  =  ∂P/∂x  +  ∂Q/∂y 

dA = element of area in R 

 
 

In a Nut Shell:  The Divergence Theorem extends the divergence form of Green’s  

theorem from two to three dimensions.   

 

In this case the line integral around a closed curve, C,  is replaced by a surface integral  

around a closed surface, S, and the area integral involving  the divergence of  the vector  

field  F  is replaced by the volume integral of the divergence of the vector field,  F . 

 



 

 
 

So we go from 

 

                               ∫ F  .  n  ds   =   ∫  ∫  div F dA         

                               C                        R 

 

 

 

 

Green's Theorem 

 

to 

               ∫  ∫ F(x,y,z)  .  n  dS   =   ∫  ∫  ∫  div F(x,y,z)  dV 

               S                                       E  

 

 

 

Divergence Theorem 

 

 

Here        F  =  P(x,y,z) i   +  Q(x,y,z) j  +  R(x,y,z) k                                                        

 

                n   =  unit normal to the closed surface  S 

                                                                                                                                        

              dS  =  element of area on surface S 

 

           div F  =  ∂P/∂x  +  ∂Q/∂y   +  ∂R/∂z   

 

               dV =  element of volume for the solid region E 

 

                E  =  volume of solid region 

 

 

                                                         
 

 

 

 
 

Alternate Strategies in the application of the Divergence Theorem 

 

     ∫  ∫ F  .  dS   =   ∫  ∫ F  .  n  dS   =   ∫  ∫  ∫  div F dV 

      S                       S                             E 

 

F(x,y,z) = vector field,  dS = element of oriented surface,  n = unit normal to S 

 

dV = element of volume of region E 

 

 



 

 

 

Method 1:             Evaluate  ∫  ∫ F  .  n  dS   directly over the surface S 

                                                S 

 

 

 

 

Method 2: 

 
Transform the double integral on S    ∫ ∫  F  ●  n dS 

                                                            S 

to a surface integral using  n =  (ru x rv) / | (ru x rv) | 

 

which gives 

 

 

                   ∫ ∫  F  ●  (ru x rv) / | (ru x rv) |dS     

                   S                              

 

and  dS  =  | (ru x rv) | dA 

 

to obtain the final result 

 

 

       ∫   ∫ F  ●  n dS =   ∫  ∫  F  ● (ru x rv) dA     

        S                          R 

 

 

where  dA is the element of area on R, on the u-v plane 

 

 
 

 

Method 3: 

 

Evaluate   ∫  ∫  ∫  div F dV   directly over the volume  E 

                   E 

 

 
 

Side note:  Some mathematicians refer to the Divergence Theorem as Gauss’ Theorem. 

 

 
Example:    The force, F, acts on the boundary, S, of a closed surface bounded by the  

paraboloid  z = x2 + y2  and the plane  z  = 4.   Use the Divergence Theorem to evaluate 

the “flux” of   F  acting over the boundary of S . 

 

Note:         flux  =      ∫  ∫ F  .  n  dS   =   ∫  ∫   ∫  div F dV         See the figure below. 

                                    S                          Vo 

 
          



 

 

 

             
 

 

 
 

      flux  =      ∫  ∫ F  .  n  dS   =   ∫  ∫   ∫  div F dV 

                        S                          Vo 

 

With     F  =  x i  +  y j  +  3 k ,               div F  =  1 + 1 + 0  =  2 

 

So    flux  =       ∫  ∫   ∫  2 dV    Next use cylindrical coordinates to evaluate this volume 

integral.               Vo 

 

                        dV  =  r dr dθ dz 

 

               θ=2π  r=2  z=4                                θ=2π  r=2                       

flux  =   2  ∫     ∫      ∫   dz r dr dθ   =     2  ∫     ∫   (4 – r2) r dr dθ   =    

               θ=0   r=0  z=r2                               θ=0   r=0   

 

             θ=2π                        2                   θ=2π 

flux =  2  ∫   (4r2/2 – r4/4)|  dθ   =    2  ∫  4 dθ  =  16π                  (result for flux) 

 θ=0                          0                   θ=0 

 

 
 

Example:  Show that the “flux” of the vector field    F  =  (3y cos z)i  +  (x2 ez) j  +  (x sin y) k  

 

                 is zero over any closed surface, S, enclosing a solid region, Vo. 

 

       flux  =            ∫  ∫ F  .  n  dS   =   ∫  ∫   ∫  div F dV 

                              S                          Vo 

 

Now    div F  =  ∂Fx/∂x   +  ∂Fy/∂y   +  ∂Fz/∂z  =  (0) + (0) + (0)  = 0 

 

So    flux  =       ∫  ∫  ∫ ( 0) dV    =  0                                                          (result) 

                 Vo 

 



 

 
 

Example:     Use the Divergence Theorem to  

evaluate the surface integral 

 

     ∫  ∫ F  .  n  dS    where  F  =  xy i  +  xz j  +  yz k   

      S 

and   n  is the outward normal to the ellipsoid   

  

x2  + 4y2  +  z2  =  1  (Figure on the right) 

 

 

     
 

 

 
 

Thus this surface integral,  I   =   ∫  ∫ F  .  n  dS   =    ∫  ∫  ∫  div F  dV   

                                                      S                             Vo 

 

div F   =  ∂Fx/∂x  +  ∂Fy/∂y  +  ∂Fz/∂z  =  y + y  =  2y 

 

                                         x =1     y=(1/2)√(1-x2)   z=(1/2)√(1-x2 - 4y2 )    

So   I  =    ∫  ∫  ∫ 2y dV   =    ∫            ∫                        ∫                             2y dz dy dx 

                  Vo                 x =-1     y=-(1/2)√(1-x2)   z=-(1/2)√(1-x2 - 4y2 )    

 

Now notice that if  F  =  -xy i  +  xz j  -  yz 

 

Then   div F   =  - 2y  =  - div F  ; since the ellipsoid is symmetrical about the  

plane  y =  0, the value of the surface integral is zero.  Direct evaluation of the 

surface integral yields the same result. 

 

 
Example:    Find the value of the flux of the vector field 

 

    F  =  2xy i  +  z2y j  +  xz k      over the unit cube formed by the coordinate planes 

 

and the planes   x = 1,  y = 1,  z = 1                            See the figure below. 

                                          

 

                           
 

 

 



 

       flux  =   ∫  ∫ F  .  n  dS    =    ∫  ∫  ∫ div F  dV   

                     S                              Vo 

 

Now      div F   =  ∂Fx/∂x  +  ∂Fy/∂y  +  ∂Fz/∂z  =  2y + z2 +  x 

 

                         x=1        y=1        z=1 

So    flux  =        ∫              ∫            ∫  (2y + z2 +  x ) dz dy dx     

                        x=0         y=0        z=0 

 

                       x=1    y=1                                1                       x=1    y=1 

       flux  =       ∫         ∫     (2yz + z3/3 +  xz )|  dz dy dx  =        ∫         ∫  (2y + 1/3 +  x ) dy dx     

                      x=0    y=0                                 0                       x=0    y=0 

 

                  x=1                        y=1            x=1 

     flux   =   ∫ (y2 + y/3 +  xy )|   dx   =         ∫ (1 + 1/3 + x) dx    =  1 + 1/3 + 1/2 

                 x=0                         y=0            x=0 

 

      flux  =  6/6  + 2/6  + 3/6  =  11/6                                                            (result) 

 
 

Alternate solution as a check: 

 

Example:   Find the value of the flux of the vector field   F  =  2xy i  +  z2y j  +  xz k      

  

over the unit cube formed by the coordinate planes and the planes   x = 1,  y = 1,  z = 1      

 

by calculating the surface integral,    ∫  ∫ F  .  n  dS   .   See the figure below. 

 

                                                             S 

 
               

                                    
 

 
 

       flux  =   ∫  ∫ F  .  n  dS    =    ∫     ∫   F  .  n  dS         where 

                     S                          S1 +  +  S6                          

      n1 = i ,  n2 = - i   ,      n3 = j ,  n4 = - j  ,      n5 = k ,  n6 = - k    

    

dS1  =  dS2  =  dydz ,       dS3  =  dS4  =  dxdz ,      dS5  =  dS6  =  dxdy    

 



 

                                                                              y=1   z=1 

       flux  =   ∫  ∫ F  .  n  dS    =   ∫  ∫ 2xy dydz   =    ∫        ∫ 2y dydz     =  1 

                     S1                           S1                       y=0   z=0     

 

Since  x = 0   on   S2       ∫  ∫ F  .  n  dS    =  0 

                                        S2   

 

Likewise,     y = 0  on S4     and   z  =  0  on  S6     both surface integrals are zero.     

On S3   y = 1    ( and  on S5     z = 1 ) 

                                                                              x=1      z=1 

       flux  =   ∫  ∫ F  .  n  dS    =   ∫  ∫ z2y dydz   =     ∫           ∫ z2 dxdz     =  1/3 

                     S3                           S3                       x=0      z=0     

 

                                                                              x=1      y=1 

       flux  =   ∫  ∫ F  .  n  dS    =   ∫  ∫ xz dxdy   =      ∫           ∫ x dxdy     =  1/2 

                     S5                           S5                       x=0      y=0     

 

      flux  =  1  + 1/3  + 1/2  =  11/6                                                  (same result) 

 

 


