
Green’s Theorem   
 

In a Nut Shell:  Green's theorem gives the relationship between a line integral around a  

 

simple closed curve, C, and a double integral over the plane region  R  bounded by  C. 

  

It is a special two-dimensional case of the more general Stokes' theorem. 

 

 

 

Green’s theorem expressed in its standard form is 

 

 ∫ P dx + Q dy =  ∫  ∫ [ ∂Q/∂x  ˗ ∂P/∂y ] dA 

C                          R 

 

where  C is a curve enclosing the region, R, with element  

 

of area dA.  The curve, C, is said to be positively oriented  

 

when traveling counterclockwise around C keeping the 

 

region, R, enclosed to the left.   

 

 

 

 

            
 

 

 

 

Note:  The partial derivatives must be continuous throughout R else you will need  

 

to modify the region to avoid discontinuities such as in a region  R  that is not 

 

simply connected.   i.e.  A region that contains a hole. 

 

 

Green’s theorem can also be expressed in its “curl form”. 

 

F  =   P(x,y) i  +  Q(x,y) j   and  dr   =  dx i  +  dy j    

 

  So      ∫ F  .  dr   =    ∫ F  . T ds   =    ∫ Pdx + Q dy   

           C                    C                        C 

 

 

where  T  is the unit tangential vector to the curve, C,  n  is the unit normal vector to the 

 

curve and  ds is the arc length along the curve.  See the figure above. 

                              i              j              k 

Now  curl F =     ∂/∂x        ∂/∂y        ∂/∂z    =   [∂Q/∂x  -  ∂P/∂y] k               

                            P(x,y)     Q(x,y)       0 

     

 

So     ∫ F  .  dr   =    ∫ F  . T ds   =    ∫  ∫  curlz F   dA      (curl form of Green’s Theorem) 

         C                    C                        R 

 

where    curlz  F is the z-component of curl  F  =  curl  F  .  k 

 



 

Green’s theorem can also be expressed in its “divergence form”. 

 

 

 

Let   n  be the unit outward normal to the curve, C.   

Here  n  =  dx i  -  dy j 

 

  and                         F  =  P i  +  Q  j 

 

So   F  .  n  =   P dx  -  Q dy    

 

 ∫ F  .  n  ds  =   ∫  P dx – Q dy  =   ∫   ∫  [∂Q/∂x  +  ∂P/∂y] 

 C                     C                            R 

 

Finally    ∫ F  .  n  ds   =   ∫  ∫  div F  dA 

               C                        R 

 

 

 

 

 

   

 

 

 

Summary: 

 

 

 

Green's Theorem in Standard Form:    

 

 

  

    ∫ P dx + Q dy  =  ∫    ∫  [ ∂Q/∂x  ˗  ∂P/∂y ] dA 

   C                            R 

 

 

 

 

 

Green's Theorem in Curl Form: 

       (vector form) 

 

    

    ∫ F  .  dr   =    ∫ F  . T ds   =    ∫    ∫  curlz F   dA       

   C                     C                        R 

 

 

    ∫ F  .  dr     =    ∫    ∫  (curl F ) ·  k  dA       

   C                         R 

 

 

 

Green's Theorem in Divergence Form: 

             (vector form) 

 

 

 

     ∫ F  .  n  ds   =   ∫   ∫  div F  dA 

    C                         R 

 

 

 

 

 

Example:  Use Green's Theorem to Evaluate  I  =     ∫  y2 dx + xy dy      

                                                                                    C            

 

around the closed curve, C, bounding the region, R,  where R is the ellipse  

 

defined by   (x/3)2 + (y/2)2  =  1 . 

 

 



 

Strategy:  Apply the standard form of Green’s Theorem to evaluate the line integral 

 

  I  =     ∫ P dx + Q dy  =   ∫  ∫  [∂Q/∂x  -  ∂P/∂y] dA    

            C                           R 

 

 

Here  P(x,y)  =  y2 ,  Q(x,y)  =  xy  and the closed curve,  C, is the 

 

Now    ∂Q/∂x  =  y  and    ∂P/∂y  =  2y    so  ∂Q/∂x  -  ∂P/∂y  =  - y 

 

                                                                           y = 2       x = 3√[1-(y/2)2] 

Thus the area integral becomes  ∫  ∫ -y dA  =  -2  ∫          ∫  y dx dy   

                                                     R                   y = -2      x = 0   

 

                     y = 2             x = 3√[1-(y/2)2]             y = 2 

    I  =       -2    ∫       y    x|                      dy    =   - 6   ∫ y √[1-(y/2)2] dy 

                    y = -2              x = 0                            y = -2 

 

   let  u = 1- (y/2)2  ,  du  = - (1/2) y dy,    y dy  =  - 2 du 

                                                            2 

    I  =   12 ∫ √u du  =  8 [1-(y/2)2  ]3/2 |  =  0        (result) 

                                                           -2 

 

Note this result makes sense since  ∫  ∫ -y dA  should equal zero when encompassing 

                                                          R 

the region, R, by going completing around the ellipse (the areas on both sides of 

the y-axis cancel out). 

 

 

Example:  Evaluate the line integral:    ∫ (7y – esinx)dx + (15x – sin(y3 + 8y) dy   

                                                                  C 

 

where  C  is a circle of radius 3 centered at (5, -7).  Note that this is a very difficult 

 

integral to evaluate.  So try simplifying the calculation using the RHS of Green’s Theorem. 

 

∂Q/∂x  = 15,  ∂P/∂y = 7 ;  ∫ ∫[∂Q/∂x  -  ∂P/∂y] dA  =   ∫ ∫ 8 dA  =  8 (π 32 )  = 72π  (result) 

                                          R                                         R 

 

Note the simplification that results in using Green’s Theorem. 

 

 

Example:  Apply Green’s Theorem to evaluate the work done by the force vector, F, going 

 

completely around the square region, R, (shown below) counterclockwise. 

 

 

  Work  =     ∫ F . dr     =   ∫  ∫  [∂Q/∂x  -  ∂P/∂y] dA   

                   C                     R  

 

       where             F  =  [ y / (x2 + y2) ] i   - [  x / (x2 + y2) ] j  =  P i  +  Q j 

 

 



 

 

                                          
 

 

Method 1:  Apply     ∫  ∫  [∂Q/∂x  -  ∂P/∂y] dA   

                   C              R  

 

Now    ∂Q/∂x  =  (x2 - y2) / (x2 + y2)2  =   ∂P/∂y   

 

Note that these partial derivatives exist throughout the region, R.  Thus the double integral  

over R equals zero since    ∂Q/∂x  =  ∂P/∂y  .  

 

 

Method 2:  Calculate the work done by evaluating the line integral directly around the 

curve, C, encompassing the region R.    

 

  Work  =     ∫ F . dr     =   ∫  ∫  [∂Q/∂x  -  ∂P/∂y] dA   

                   C                     R 

 

Strategy:  In calculating the line integral on the left hand side of Green’s Theorem 

                                       

        ∫ F . dr                 Strategy:   Break the path   C   into four parts,  

       C               

 C1,  C2,  C3,  and  C4  proceeding counterclockwise starting at (1,1).        

 

                                       
                      

i.e.  C1  goes from (1,1) to (2,1), C2 is from (2,1) to (2,2), C3  is from (2,2) to (1,2), 

and finally C4  is from (1,2) returning to (1,1). 

 



 

          F . dr  =  [(y i  -  x j)/ (x2 + y2)] .  [ d x i  +  dy j ]  =  (y dx – x dy) / (x2 + y2) 

                                        

        ∫ F . dr   =    ∫ F . dr   +    ∫ F . dr   +    ∫ F . dr   +   ∫ F . dr   

       C                 C1                          C2                         C3                 C4 

  

Note:      On C1      y = 1,  dy = 0, and   1  ≤  x  ≤ 2. 

 

                           2                                         2 

So   ∫ F . dr   =   ∫ (dx / (x2 + 1)  =  tan-1 (x) |   =  tan-1(2) -  tan-1(1)    

      C1                1                                          1 

 The other three line integrals are similar in that they involve the inverse tangent 

function and when added together sum to zero.  You should verify this result  

by completing the remaining three line integrals and summing them up. 

 

 

Green’s Theorem can be extended for the case where the vector field,    

F(x,y) =  P(x,y) i  +  Q(x,y) j   is not continuous at all points in region R. 

 

 

Example:  Apply Green’s Theorem to evaluate the work done by the force vector, F, going 

completely around the square region, R, with vertices at  (-1,-1),  (-1,1),   (1,1),   (1,-1)   

returning to  (-1,-1) (shown below) counterclockwise. 

 

  Work  =     ∫ F . dr     =   ∫  ∫  [∂Q/∂x  -  ∂P/∂y] dA   

                   C                     R  

 

       where             F  =  [ y / (x2 + y2) ] i   - [  x / (x2 + y2) ] j  =  P i  +  Q j 

 

 

As in the previous example    ∂Q/∂x  =  (x2 - y2) / (x2 + y2)  =  ∂P/∂y    

But these partial derivatives don’t exist in the region, R, at the origin (0,0).  So “cut out”  

a small circular region of radius   a   centered at the origin.  Then the partial derivatives  

exist everywhere in the new region R’ which permits using the right hand side.  Thus the  

integral over R’ equals zero since   ∂Q/∂x  =  ∂P/∂y  .   See the figure below. 

 

 

                                       
 

 



 

But now in the region  R’ you have you have two curves around its periphery, C and Co . 

 

Here C consists of C1, C2, C3, and C4 where C1 is the portion of C extending from  

 

(-1,-1) to (1,-1).  Likewise (moving counterclockwise around the square) C2  is from 

 

 (1,-1) to (1,1), C3 is from (1,1) to (-1,1), and C4  is from (-1,1) back to (-1,-1).  

 

 Co  is a circular curve of radius a going around the origin also in the counterclockwise direction.   

 

 

Strategy:  Remove the discontinuity in the vector function, F, at the origin by removing 

the origin from the original region, R.  Replace it with a new region, R'.   Then apply 

Green's theorem to the new region, R' .   i.e. 

 

 

  I  =     ∫ F . dr   -   ∫ F . dr  =   ∫  ∫  [∂Q/∂x  -  ∂P/∂y] dA   =  0 

            C                 Co                R’  

 

 

Now the vector function, F,  is continuous in R'.  So the partial derivatives exist 

 

and from before    ∂Q/∂x  =  ∂P/∂y  so that  ∂Q/∂x  -  ∂P/∂y  =  0 

 

Note the negative sign for the path  Co  since the region R’ is on the right hand side 

 

when traversing  Co  in the counterclockwise direction.  
 

 

So         ∫ F . dr   =   ∫ F . dr  

             C                Co             

 

          F . dr  =  [(y i  -  x j)/ (x2 + y2) ] .  [ d x i  +  dy j ] 

 

 

On  Co    x  =  a cos θ ,  y  =  a sin θ ,  dx  =  - a sin θ dθ , and  dy  =  a cos θ dθ  . 

 

 

So   F . dr   =  ( - a2 sin2 θ  -  a2 cos2 θ ) d θ / a2   =  -1 d θ 

 

                                                       θ = 2π 

So         ∫ F . dr   =   ∫ F . dr   =     -   ∫    d θ   =   - 2π        which is the result. 

             C                Co                   θ = 0 

 

 

Basics of Topology 

 

In a Nut Shell:  Curves and domains in two and three dimensions can be classified in 

 

different ways that are important when applying Green's Theorem and Stokes Theorem. 

 

The table below provides definitions of terms related to the topology of curves and domains. 

 



 

Definitions:  Let  D  be the domain 

 

       

 

Simple Curve 

 

 

 

The curve does not intersect itself 

 

Closed Curve 

 

 

 

The terminal point coincides with the initial point of the curve 

 

Open Domain 

 

 

 

The domain contains points inside but not on the boundary 

of the domain 

 

Closed Domain 

 

The domain contains points within and on the boundary 

of the domain 

 

 

Connected Domain 

 

 

 

Any two points in the domain can be joined by a path within 

the domain 

 

Simply Connected 

Domain 

 

 

Every simple closed curve in the domain encloses only points 

within the domain 

 

 

 

 

 

 

 

 


