Integration of Rational Functions using Partial Fractions

In a Nut Shell: Recall that a rational function is simply the ratio of two polynomials,
say $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$. Let $\mathrm{R}(\mathrm{x})$ be the following rational function.

$$
\mathbf{R}(\mathbf{x})=\mathbf{P}(\mathbf{x}) / \mathbf{Q}(\mathbf{x})
$$

where $P(x)$ and $Q(x)$ are polynomials i.e. $P(x)=x^{3}+x$ and $Q(x)=x+1$

The strategy involved in evaluating integrals of rational functions is then to express the rational function as a sum of simpler functions called partial fractions. Thus the method of integration is called the method of "partial fractions".

Note: If $\mathrm{P}(\mathrm{x})$ is of equal or higher degree than $\mathrm{Q}(\mathrm{x})$ first divide $\mathrm{Q}(\mathrm{x})$ into $\mathrm{P}(\mathrm{x})$ using long division so that $\mathrm{P}(\mathrm{x})$ is of lower degree than $\mathrm{Q}(\mathrm{x})$.

The result for the rational function, $\mathrm{R}(\mathrm{x})$, is:

$$
\mathrm{R}(\mathrm{x})=\mathrm{p}(\mathrm{x})+\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})=\mathrm{p}(\mathrm{x})+\mathrm{F}_{1}(\mathrm{x})+\mathrm{F}_{2}(\mathbf{x})+\ldots
$$

The $\mathbf{F}_{\mathbf{i}}(\mathbf{x})$, "the partial fractions", commonly have two forms that are useful.
a. $\mathrm{A} /(\mathrm{ax}+\mathrm{b})^{\mathrm{n}}$
b. $(B x+C) /\left(a x^{2}+b x+c\right)^{n}$
with $\mathrm{b}^{2}-4 \mathrm{ac}<0$ in the quadratic term
If the exponent, n, is such that $n>1$, then the decomposition must account for the multiplicity of these terms. i.e. for forms as in part a and in part b

If $\mathrm{n}=2$, then $\left.\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})=\mathrm{A}_{1} /(\mathrm{ax}+\mathrm{b})+\mathrm{A}_{2} / \mathrm{ax}+\mathrm{b}\right)^{2}$
A similar situation holds for multiplicity of quadratic forms as in part b. i.e. If $\mathrm{n}=2$,
$\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})=\left(\mathrm{B}_{1}(\mathrm{x})+\mathrm{C}_{1}\right) /\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)$

$$
+\left(\mathrm{B}_{2}(\mathrm{x})+\mathrm{C}_{2}\right) /\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)^{2}
$$

Example Partial Fractions with Distinct Linear Factors

$I=\int d x /\left(x^{2}+x-2\right)$
Note: $\mathrm{P}(\mathrm{x})=1$ and $\mathrm{Q}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}-2$ So long division is unnecessary.
Here $P(x)$ is of degree 0 and $Q(x)$ is of degree 2 .

$$
1 /\left(x^{2}+x-2\right)=1 /(x-1)(x+2)=A /(x-1)+B /(x+2)
$$

The terms $A /(x-1)$ and $B /(x+2)$ are the "partial fractions"

Next put the partial fractions under a common denominator. The result is:

$$
1 /\left(x^{2}+x-2\right)=1 /(x-1)(x+2)=[A(x+2)+B(x-1)] /(x-1)(x+2)
$$

and equate numerators on both sides:

$$
1=A(x+2)+B(x-1)=x(A+B)+(2 A-B)
$$

Solve for A and B. There are two methods to obtain the solution.

Method 1: Equate terms of equal powers of x on both sides of the equal sign. The result of this yields two equations in the unknowns A and B as follows:
$2 \mathrm{~A}-\mathrm{B}=1$ and $\mathrm{A}+\mathrm{B}=0 \quad$ Solve for A and $\mathrm{B} . \mathrm{A}=1 / 3, \mathrm{~B}=-1 / 3$

Method 2: Both sides of the equation $1=A(x+2)+B(x-1)$ must hold for any value of x. So pick values of x that enable you to solve most easily for A and B.

For example pick $x=1$, which gets rid of B. Then you get $1=3 \mathrm{~A}$. so $\mathrm{A}=1 / 3$. Next pick $x=-2$ which gets rid of A. Then $1=-3 B$ and $B=-1 / 3$.
Note: This method may be quicker and easier.
So $I=(1 / 3) \int d x /(x-1)-(1 / 3) \int d x /(x+2)$
and $I=(1 / 3) \ln |x-1|-(1 / 3) \ln |x+2|+C \quad($ result $)$

Example Partial Fractions where Long Division is required and there are

 no repeated roots.$$
\begin{aligned}
& I=\int f(x) d x \quad \text { where } \\
& f(x)=P(x) / Q(x)=\left[2 x^{3}-4 x^{2}-15 x+5\right] /\left[x^{2}-2 x-8\right]
\end{aligned}
$$

Here $\mathrm{P}(\mathrm{x})$ is of degree 3 and $\mathrm{Q}(\mathrm{x})$ is of degree 2 .
Since the degree of the polynomial in the numerator exceeds that of the denominator, one must use long division to obtain:

$$
\begin{aligned}
& f(x)=2 x+(x+5) /\left(x^{2}-2 x-8\right)=2 x+(x+5) /[(x-4)(x+2)] \\
& I=\int f(x) d x=\int 2 x d x+\int(x+5) /[(x-4)(x+2)] d x
\end{aligned}
$$

Now use partial fractions for the second integral.
$(x+5) /[(x-4)(x+2)]=A /(x-4)+B /(x+2)$

The terms $A /(x-4)$ and $B /(x+2)$ are the "partial fractions". Next put under the common denominator $(x-4)(x+2)$ and equate both sides
$(x+5) /[(x-4)(x+2)]=[A(x+2)+B(x-4)] /[(x-4)(x+2)]$
So $A(x+2)+B(x-4)=x+5$ which must hold for any value of x.

Use Method 2 picking convenient values of x to solve for A and for B .
Pick $x=4$. Then $6 A=9$ and $A=3 / 2$. Next pick $x=-2$. Then $-6 B=3$ and $B=-1 / 2$.
Then the integrals become

$$
I=\int 2 x d x+(3 / 2) \int d x /(x-4)-(1 / 2) \int d x /(x+2)
$$

So $\quad I=x^{2}+(3 / 2) \ln |x-4|-(1 / 2) \ln |x+2| \quad$ (result)

Example Partial Fractions with Repeated Roots

$$
\begin{aligned}
& I=\int f(x) d x \text { where } \\
& f(x)=\left[5 x^{2}+20 x+6\right] /\left[x^{3}+2 x^{2}+x\right] \\
& \text { or } f(x)=\left[5 x^{2}+20 x+6\right] /\left[x\left(x^{2}+2 x+1\right)\right]
\end{aligned}
$$

Note: $\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})$ where $\mathrm{P}(\mathrm{x})=5 \mathrm{x}^{2}+20 \mathrm{x}+6$ and $\mathrm{Q}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}$ So long division is unnecessary. Next factor the denominator as follows:

$$
f(x)=\left[5 x^{2}+20 x+6\right] /\left[x(x+1)^{2}\right]
$$

Note: $\mathrm{Q}(\mathrm{x})$ is a product of linear factors x and $(\mathrm{x}+1)$. Here $(\mathrm{x}+\mathbf{1})$ is repeated.
Now use partial fractions taking into account the repeated factor for $(x+1)$.

$$
\left[5 x^{2}+20 x+6\right] /\left[x(x+1)^{2}\right]=A / x+B /(x+1)+C /(x+1)^{2}
$$

Put this expression under a common denominator which yields,

$$
\mathrm{A}(\mathrm{x}+1)^{2}+\mathrm{Bx}(\mathrm{x}+1)+\mathrm{Cx}=\left[5 \mathrm{x}^{2}+20 \mathrm{x}+6\right]
$$

Use Method 2 pick convenient values of x to solve for A, B, and C using this equation. Note: The convenient values of x are $0,-1$, and 1 .

Pick $x=0$ (both sides of the equal sign) Then $A=6$
Next pick $\mathrm{x}=-1$. This gives $-\mathrm{C}=-9$. So $\mathrm{C}=9$.

Finally pick $\mathrm{x}=1$ and use the calculated values found for A and C .
This gives $6(4)+2 B+9(1)=5+20+6$. Then $2 B=-2$ and $B=-1$.

$$
\text { In summary } \quad \mathrm{A}=6, \quad \mathrm{~B}=-1, \quad \mathrm{C}=9
$$

So $\int[A / x] d x+\int[B /(x+1)] d x+\int\left[C /(x+1)^{2}\right] d x$ becomes
$I=\int 6 d x / x-\int d x /(x+1)+9 \int d x /(x+1)^{2}$
The third integral can by simplified by letting $u=x+1$, $d u=d x, 9 \int u^{-2} d u$
and $\quad I=6 \ln |x|-\ln |x+1|-9(x+1)^{-1} \quad($ result $)$

Example: $\quad I=\int\left[\ln (x+1) / x^{2}\right] d x$
Strategy: First to simplify the integral use integration by parts.

$$
\begin{array}{cc}
\text { Pick } u=\ln (x+1) & d v=d x / x^{2} \\
d u=d x /(x+1) & v=-1 / x \\
I=-(1 / x) \ln (x+1) & +\int d x /[x(x+1)]
\end{array}
$$

The integral involves a rational function. So apply the method of partial fractions.

$$
\begin{aligned}
& f(x)=1 / x(x+1) \\
& A / x+B /(x+1)=1 / x(x+1) \\
& A(x+1)+B x=1 \quad \text { Pick } x=0, \text { then } A=1, \text { Pick } x=-1, \text { then } B=-1
\end{aligned}
$$

So $\int \mathrm{dx} /[\mathrm{x}(\mathrm{x}+1)] \quad \int \mathrm{dx} / \mathrm{x}-\int \mathrm{dx} /(\mathrm{x}+1)$
Result: $I=-(1 / x) \ln (x+1)+\ln (x)-\ln (x+1)+C$

