
     Stokes’ Theorem 

 

Background:  Recall that Green's theorem gives the relationship between a line  

integral around a simple closed curve, C, in the x-y plane to a double integral over  

the plane region R bounded by C.   See the figure below. 

                      

 

                                        
 

 

 

In its “curl form”   

Green’s Theorem is:   ∫ F  .  dr   =    ∫ F  . T ds   =    ∫  ∫  curlz F   dA      
                                    C                    C                        R 
Where 

 

                 F  =   P(x,y) i  +  Q(x,y) j   =   the vector field 

               dr   =  dx i  +  dy j    =  T ds 

                 T  =  the unit tangential vector to the path C 

                ds  =  the arc length along the  curve, C 

                dA =  the element of area in R 

 

 

                                                                        

                                i              j              k 

Note:  curlz F =     ∂/∂x        ∂/∂y        ∂/∂z    =   [∂Q/∂x  -  ∂P/∂y] k               

                            P(x,y)     Q(x,y)       0 

 

In other words,  curlz F    is the z-component of curl F  =  curl F  . k 

 

 
In  a Nut Shell:  Stokes’ Theorem extends the “curl form” of Green’s Theorem from  

two to three dimensions.  The line integral of a vector field, F,  around a simple, closed,  

piecewise smooth curve, C, with positive orientation equals the curl of the vector field, 

curl F, over the piecewise smooth oriented surface, S, with unit vector n . 

 



 

  

Stokes’ Theorem 

 

    

    ∫ F (x,y,z) .  dr   =    ∫  ∫  curl F .  dS    =  ∫  ∫  curl F . n dS                                                                 

    C                               S                              S 

 

 

where  F (x,y,z)  is a vector field (could represent a force) 

 

dr  =  the differential vector along the curve, C, in space 

 

dr  =  T ds   T is the unit tangential vector to the curve, C, at any point 

 

ds  =   the element of arc length along the space curve C 

 

n  =  the unit normal vector to the surface, S, inside the space curve, C 

 

dS = the oriented element of surface area on S 

 

 

 

 

                             
                            

 

 

 

 
 

Strategies in the application of Stokes’ Theorem 

 

 

 

                           ∫ F ● dr   =    ∫ ∫  curl F  ● dS     

                          C                    S 

 

 

F(x,y,z) = vector field,  dr = element of arc length on C,  dr   =  T ds 

 

dS = element of oriented surface area,  dS = n dS,  n = unit normal to S 

 

 



              
     Method 1:    Evaluate  ∫ F ● dr  directly along space curve C 

                                           C 

 

  
 

     Method 2:    Evaluate  ∫ ∫  curl F  ● dS   directly over the surface  S 

                                          S 

 
 

    Method 3A: 

 

                           Transform the double integral  ∫ ∫  curl F  ● dS 

                                                                             S 

                            to a surface integral as follows: 

 

                             ∫ ∫  curl F  ● dS  =  ∫ ∫  curl F  ●  n dS     

                             S                             S 

 

                                          where   n =  (ru x rv) / | (ru x rv) | 

 

                             ∫ ∫  curl F  ● (ru x rv) / | (ru x rv) |dS     

                             S                              

 

                             Use    | (ru x rv) | dS  = dA  to obtain the final result 

 

                              ∫ F ● dr   =   ∫ ∫  curl F  ● (ru x rv) dA     

                             C                   R 

 

                             where  dA is the element of area on R, on the u-v plane 

   

 

                     

  Method 3B: 

 

         Transform the double integral  ∫ ∫  curl F  ● dS 

                                              S  

                             to a surface integral as follows: 

 

                              ∫ ∫  curl F  ● dS  =  ∫ ∫  curl F  ●  n dS     

                              S                             S 

 

                                            where   n =  (ru x rv) / | (ru x rv) | 

 

                               ∫ ∫  curl F  ● (ru x rv) / | (ru x rv) |dS     

                               S                              

 

                              Use    | (ru x rv) | dS  = dA  to obtain the final result 

 

                              ∫ F ● dr   =   ∫ ∫  curl F  ● (ru x rv) dA     

                             C                   R 

 

                             where  dA is the element of area on R, on the u-v plane 

 



 

Comparison of Green’s Theorem and Stokes’ Theorem 

 
 

 

Green's theorem gives the relationship between a line integral around a simple closed  

 

curve, C, in a plane and a double integral over the plane region  R  bounded by C. It is a  

 

special two-dimensional case of the more general Stokes' theorem. 

 

 
 

Green’s theorem in its “curl form”. 

 

          where     F  =   P(x,y) i  +  Q(x,y) j   and  dr   =  dx i  +  dy j    

 

is as follows:    (curl form of Green’s Theorem)            

     

     ∫ F(x,y)  .  dr   =    ∫ F  . T ds   =    ∫  ∫  curlz F   dA                                     equation (1)                           

     C                             C                           R 

 

where    curlz  F is the z-component of curl  F  =  curl  F  . k 

 
 

Stokes’ Theorem gives the relationship between a line integral around a simple closed 

 

curve, C, in space, and a surface integral over a piecewise, smooth surface. 

 

              ∫ F (x,y,z) .  dr   =    ∫  ∫  curl F . n dS                                                 equation (2) 

 

              C                                S        

 

where  F (x,y,z)  is a vector field (could represent a force) 

 

dr  =  T ds   T is the unit tangential vector to the space curve, C, at any point 

 

ds   =  the element of arc length along the space curve C 

 

n  =  the unit normal vector to the surface, S, inside the space curve, C 

 

dS  =  element of surface area on S 

 

 

Note the similarities between equations (1) and (2). 

 

 
 

In summary, Stokes’ Theorem states that the line integral around the boundary curve of  

 

S of the tangential component of F equals the surface integral of the normal component 

 

of the curl of F. 

 



 

Example:  Use Stokes' Theorem to evaluate the line integral of the space curve, C, 

 

formed by the intersection of the plane  x - 2y + z  =  5  with the cylinder x2  +  y2  =  9  

 

                                              
where the vector field is  

   

                      F (x,y,z)  =  (x2 - 3y2) i  +  (z2 + y) j  +  (x  +  2z2) k 

 
 

Now Stokes’ Theorem is        ∫ F (x,y,z) .  dr   =   ∫  ∫ curl F  . n  dS 

                                             C                               R        

                                  
   

 

                                   i                   j                  k                   

curl F =        det      ∂/∂x              ∂/∂y            ∂/∂z                  

                             (x2 - 3y2)      (z2 + y)        (x + 2z2) 

 

curl F =        [-2z] i  - [1] j + [6y] k      

 

The surface integral is over the plane of intersection, so that the unit normal to the  

 

plane, n, can be determined using the gradient to the plane.  i.e.       

 

                                 n  =  grad(f)/| grad(f)|  =   

 

                                [∂f/∂x i  + ∂f/∂y j + ∂f/∂z k]/[√[ [(∂f/∂x)2 + (∂f/∂y)2 +(∂f/∂z)2] 

 

                                where f(x,y,z)  =  x - 2y + z  -  5  =  0       

 

so                            ∂f/∂x  =  1,   ∂f/∂y  =  -2,   ∂f/∂z  =  1                             and 

   

   n  =     [ i  - 2 j +  k ] / √ 6     Note:  n  is the normal to the slanted plane of intersection    

 

 
 

 

Recall  Stokes’ Theorem:          ∫ F (x,y,z) .  dr   =   ∫   ∫ curl F  . n  dS 

                                                C                               R        

 



 
              curl F  . n   =  {[-2z] i – [1] j  +  [6y] k } .   [ i  -  2 j + k ] / √6 } 

 

                                  =  [ -2 z  + 2  + 6y ] / (1/√6) 

 

So the surface integral becomes    ∫    ∫  (1/√ 6)[-2z + 2 + 6y] dS . 

                                                       R 

 

where  R  is the slanted elliptical surface formed by the intersection of the plane and  

 

the cylinder.   Since this surface integral is difficult to evaluate one strategy is to 

 

apply the transformation strategy for surface integrals to obtain an area integral over 

 

the circular area in the x-y plane.  Call it  D. 

 
 

On the slanted plane  dS = element of surface area in R,   

dA = element of are in region, D in the xy - plane 

 

    z  =   5  - x + 2y,    and   dS  =  √[ (∂z/∂x)2  +  (∂z/∂y)2  + 1] dA 

 

                      so          dS  =  √[ 1 + 4 + 1]  dA   =  √6  dA =  √6 dx dy   

 

and the area integral becomes    ∫    ∫ √6  (1/√ 6)[-2(5 – x + 2y) + 2 + 6y] dx dy 

                                                    D 

 

∫    ∫ [ -10 + 2x -4y + 2 + 6y] dx dy  =  ∫   ∫ [- 8  + 2x  + 2y] dx dy 

 D                                                         D 

 

Switch to polar coordinates  (D  is a circle in the x-y plane of radius 3) 

 

                                  where     dA  =  dx dy  =  r dr dθ 

 

   θ=2π     r=3                                                   θ=2π                                                     r=3 

   ∫         ∫  [-8 + 2r cosθ + 2r sinθ ] r dr dθ  =  ∫[-8 r2/2+ (2 r3/3) cosθ + (2 r3/3) sinθ] | dθ 

   θ=0      r=0                                                    θ=0                                                       r=0 

  

 

θ=2π         

   ∫  [- 36  +  18 cosθ  +  18 sinθ ] dθ  =  -36(2π)  =  - 72π             (result) 

θ=0 

 
 

 

Example:  Use Stokes' Theorem to evaluate the line integral of the space curve, C,  

 

determined by the intersection of the xz-plane with the hemisphere, S, given by 

 

x2  +  y2 +  z2  =  1,  y  ≥  0  oriented in the positive y-axis and the vector field is     

 

F(x,y,z) = < y, z, x > .    See the figure below. 

 

 



 

 

                          
 

 
                                              

Method 1  Evaluate the line integral  ∫ F (x,y,z) .  dr   directly. 

                                                          C 

 

Note on C     x2 + z2 = 1   and   y = 0.   Define parameters on C:    x = cos θ,  z = - sin θ 

 

So   dr  =  - sin θ dθ i  -  cos θ dθ k   and  F  =  z j + x k  giving 

 

    F ● dr  =  -  cos2 θ dθ   where  0 ≤  θ  ≤ 2π 

 

      2π                     2π                     2π   

       ∫    F ● dr  =  -  ∫ cos2 θ dθ   =  - ∫ [ ( 1 + cos 2θ) / 2 ] dθ  =  - π  (result) 

       0                      0                        0 

 
 

Method 2  Direct evaluation of  ∫ ∫ curl F ● dS   =    ∫ ∫ curl F ●  n dS    

                                                   S 

 

                              i          j         k 

   curl F  =   det    ∂/∂x   ∂/∂y     ∂/∂z      where  det represents the determinant 

                             y         z         x 

                                                          curl F  =   -  i   -  j   -  k 

 

Next determine the unit normal vector, n, to dS.  Let  g(x,y,z) be the surface of the 

 

hemisphere, S.  Then  g(x,y,z) = x2 + y2 + z2 ˗ 1  =  0.  The unit normal to dS then 

 

is  n = grad g / | grad g |  =  < 2x, 2y, 2z > / √ [ (2x)2 + (2y)2 + (2z)2 ] 

 

now  x2 + y2 + z2 = 1  so  n  =  < x, y, z > 

 

Since the surface, S, is on the hemisphere, switch to spherical coordinates. 

 

Recall   x =  ρ sin φ cos θ,    y =  ρ sin φ sin θ,    z =  ρ cos φ  and on S  ρ = 1 

 

  So the unit normal becomes          n   =   <  sin φ cos θ,    sin φ sin θ ,  cos φ  >  

                       

    curl F . n  =  - <  sin φ cos θ,    sin φ sin θ ,  cos φ  > 

 



 

Next determine the expression for the element of surface area, dS. 

Evaluate the expression for the element of surface area, dS, using the figure below.      

             

                                              
 

Since the radius of the hemisphere is one,   dS  =  sin φ dφ dθ 

 
 

curl F ● n  dS  =  - [  sin φ cos θ + sin φ sin θ +  cos φ ] sin φ dφ dθ 

      

                                             π   π  

      ∫   ∫  curl F ● n ) dS  =   - ∫    ∫  [  sin φ cos θ + sin φ sin θ +  cos φ ] sin φ dφ dθ 

0 0 

 

                                             π   π  

      ∫   ∫  curl F ● n ) dS  =   - ∫    ∫  [  sin2 φ cos θ + sin2 φ sin θ +  sin φ cos φ ] dφ dθ 

0 0 

 
 

                                            π   π  

      ∫   ∫  curl F ● n ) dS  =   - ∫    ∫ [ sin2 φ cos θ +  sin2 φ sin θ + sin φ cos φ ] dθ dφ 

0 0 

 

                                            π                                                                       π                                     

      ∫   ∫  curl F ● n ) dS  =     ∫   [ - sin2 φ sin θ +  sin2 φ cos θ - ( ½ sin2φ )θ |  dφ 

0                                                                      0 

 

                                            π    

      ∫   ∫  curl F ● n ) dS  =    ∫  [- sin2 φ (0-0) +  (-1 -1) sin2 φ + (π/2) sin2 φ ]  dφ 

1  

                                                 π  

      ∫   ∫  curl F ● n ) dS  =         ∫  [(-2{( 1 + cos 2φ)/2}+ (π/2) sin2 φ ]  dφ 

    0 

                                                                               π 

      ∫   ∫  curl F ● n ) dS  =     [- 2(π/2) +  2 sin 2φ |    =  - π                    (same result) 

                                                                               0 

 

Method 3      Change  ∫   ∫  ( curl F ● n ) dS  into a surface integral . 

 

    ∫   ∫  curl F ● n  dS   =   ∫   ∫  ( curl F ● (ru x rv) dA   

     S                                   R 

 

The transformed surface from  S  to  R  is shown below. 

 



 

 

 

                            
 

 

 

 
On  S        r  =  < x , y , z >  =  < x, √ ( 1 – x2 – z2 )  , z > 

 

rx  =  < 1,  -x / √ ( 1 – x2 – z2 ), 0 > ,    rz  =  < 0,  -z / √ ( 1 – x2 – z2 ), 1 > 

 

Since positive orientation is in the positive y-direction  dS  =  ( rz x rx ) dA 

 

 

                            i                        j                            k 

rz x rx  =  det       0        -z / √ ( 1 – x2 – z2 )               1 

                            1        -x / √ ( 1 – x2 – z2 )              0 

 

 
 

Method 3   Changing    ∫   ∫  curl F ● n ) dS  into a surface integral     (continued) 

 
 

    ∫   ∫  ( curl F ● n ) dS   =  ∫   ∫  ( curl F ● (ru x rv) dA   

     S                                   R 

 
 

                            i                        j                            k 

rz x rx  =  det       0         -z / √ ( 1 – x2 – z2 )              1 

                           1         -x / √ ( 1 – x2 – z2 )              0 

 

rz x rx  =  <  -x / √ ( 1 – x2 – z2 ) ,  1,    -z / √ ( 1 – x2 – z2 )  > 

 

recall  curl F  =  - < 1, 1, 1 >   so 

 

 

curl F  ● (rz x rx )  =  -x / √ ( 1 – x2 – z2 ) -  1  - z / √ ( 1 – x2 – z2 )   

 



 

Since the transformed surface, R, in the x-z plane is a circular area, it is convenient to  

 

switch to polar coordinates.  So x = x(r,θ), z = z(r,θ) as follows: 

 

          x = r cos θ,      z = - r sin θ   and  dA = r dr dθ 

 
 

The resulting surface integral is 

 

   r = 1    θ = 2π 

     ∫           ∫     ˗ r cos θ / √ (1 – r2 )  ˗ 1  +  r sin θ / √ (1 ˗  r2 )  ] dθ  r dr 

  r = 0    θ = 0 

 

   r = 1                                                                            2π 

     ∫    [  ˗ r sin θ / √ (1 ˗  r2 )  - θ  +  r cos θ / √ (1 ˗  r2 )  ]    r dr 

  r = 0                                                                             0 

 

 

  r = 1                                                                        

     ∫   ( ˗ 2π )  r dr   = ˗ 2π (1/2)  =  ˗  π                                        (same result) 

  r = 0                                                                            

 

 


