Steady Periodic Vibrations

In a Nut Shell: Displacement, $\mathrm{x}(\mathrm{t})$, of an undamped mechanical system with mass, m , and spring constant, k , (figure below) undergoes steady periodic vibrations when subjected to a periodic forcing function, $\mathrm{f}(\mathrm{t})$.

The steady state response, (also called the steady periodic solution) is also the particular solution), $\mathrm{x}_{\mathrm{p}}(\mathrm{t})$. It is governed by the forcing function since there is no damping to diminish the response. The differential equation of motion is:

$$
\begin{equation*}
m x^{\prime \prime}+k x=f(t) \tag{1}
\end{equation*}
$$

where $\mathrm{m}=$ mass of the system
$\mathrm{x}^{\prime \prime}=\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}=$ the acceleration of the mass, m
$\mathrm{k}=$ spring constant
$\mathrm{x}(\mathrm{t})=$ displacement of the mass
$f(t)=$ periodic forcing function

Representation of Forcing Function, f(t)

Use Fourier Series as a way to represent more complicated (more realistic) forcing
functions, $f(t)$, with direct applications to vibration problems. Suppose $f(t)$ is represented as follows:

$$
\begin{equation*}
f(t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi t / L) \tag{2}
\end{equation*}
$$

where b_{n} are the Fourier coefficients (need to be determined)

Strategy to find the steady periodic response, $\mathrm{x}(\mathrm{t})$, for the differential equation governing the mechanical system describe in the equations below

$$
\begin{equation*}
m x^{\prime \prime}+k x=f(t) \tag{1}
\end{equation*}
$$

where the general, periodic forcing function is represented by

$$
\begin{equation*}
f(t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi t / L) \tag{2}
\end{equation*}
$$

involves four steps.

Step 1: Find the Fourier coefficients for $f(t)$, of period 2 L , as follows:

$$
b_{n}=(2 / L) \int_{0}^{L} f(t) \sin (n \pi t / L) d t \quad \text { and substitute into eq. (2) }
$$

Step 2: Assume a steady periodic response of the mechanical system governed by eq. (1), $\mathrm{x}_{\mathrm{sp}}(\mathrm{t})$ as follows:

$$
\begin{equation*}
x_{\text {sp }}(t)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi t / L) \tag{3}
\end{equation*}
$$

where c_{n} are unknown coefficients (yet to be determined)

Step 3: Substitute (3) into the equation of motion, eq. (1).

Step 4: Equate coefficients of $\sin (n \pi t / L)$ and solve for c_{n} using the values obtained for b_{n}.

Steady, periodic response of the mechanical system is then given by:

$$
x_{\text {sp }}(t)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi t / L) \quad \text { (result) }
$$

Example: Find the steady periodic response, $\mathrm{x}_{\mathrm{sp}}(\mathrm{t})$, for the spring-mass system shown in the figure below subject to the prescribed forcing function, $\mathrm{f}(\mathrm{t})$.

$$
\begin{equation*}
x^{\prime \prime}+2 x=f(t) \tag{1}
\end{equation*}
$$

Strategy: Apply the four step method.

Step 1: Find the Fourier coefficients for $\mathrm{f}(\mathrm{t})$ as follows:
Recall

$$
\mathrm{b}_{\mathrm{n}}=(2 / \mathrm{L}) \int_{0}^{\mathrm{L}} \mathrm{f}(\mathrm{t}) \sin (\mathrm{n} \pi \mathrm{t} / \mathrm{L}) \mathrm{dt}
$$

So

$$
\begin{aligned}
& \left.\mathrm{b}_{\mathrm{n}}=(2 / 4) \int_{0}^{4} \mathrm{f}(\mathrm{t}) \sin (\mathrm{n} \pi \mathrm{t} / 4) \mathrm{dt}=(1 / 2)\right) \int_{2}^{4} 20 \sin (\mathrm{n} \pi \mathrm{t} / 4) \mathrm{dt} \\
& \left.\mathrm{~b}_{\mathrm{n}}=-\left.10(4 / \mathrm{n} \pi) \cos (\mathrm{n} \pi \mathrm{t} / 4)\right|_{2} ^{4}=-40 / \mathrm{n} \pi \pi\right)[\cos \mathrm{n} \pi-\cos (\mathrm{n} \pi / 2)]
\end{aligned}
$$

Step 2: Assume a steady periodic response, $\mathrm{x}_{\mathrm{sp}}(\mathrm{t})$ as follows:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{sp}}(\mathrm{t})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{c}_{\mathrm{n}} \sin (\mathrm{n} \pi \mathrm{t} / 4) \tag{3}
\end{equation*}
$$

Step 3: Put $\mathrm{x}_{\text {sp }}(\mathrm{t})$ into eq. of motion (eq 1) $\mathrm{x}{ }^{\prime \prime}+2 \mathrm{x}=\mathrm{f}(\mathrm{t})$

$$
\sum_{n=1}^{\infty}\left[-(n \pi / 4)^{2}+2\right] c_{n} \sin (n \pi t / 4)=f(t)
$$

Step 4: Equate coefficients of $\sin (n \pi t / 4)$ and solve for c_{n} using the values obtained for b_{n}.

$$
\begin{aligned}
& \left.\left[-(n \pi / 4)^{2}+2\right] c_{n}=-40 / n \pi \pi\right)[\cos n \pi-\cos (n \pi / 2)] \\
& \left.c_{n}=-40 / n \pi \pi\right)[\cos n \pi-\cos (n \pi / 2)] /\left[2-(n \pi / 4)^{2}\right]
\end{aligned}
$$

The resulting steady, periodic response is:

$$
\mathrm{x}_{\mathrm{sp}}(\mathrm{t})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{c}_{\mathrm{n}} \sin (\mathrm{n} \pi \mathrm{t} / 4) \quad \text { is the steady periodic response } \quad \text { (result) }
$$

where $\left.c_{n}=-40 / n \pi \pi\right)[\cos n \pi-\cos (n \pi / 2)] /\left[2-(n \pi / 4)^{2}\right]$

