

Strategy: A general approach to solving the 1-D wave equation

 $\partial^2 \mathbf{u}/\partial t^2 = \mathbf{a}^2 \partial^2 \mathbf{u}/\partial \mathbf{x}^2$ 

is to assume separation of variables. i.e. Assume:

$$u(x,t) = X(x) T(t)$$

Substitution of u(x,t) = X(x) T(t) into the wave equation gives

$$X(x) dT^2/dt^2 = a^2 d^2X/dx^2$$

Then by division  $(d^2X/dx^2)/X = (dT^2/dt^2)/a^2T = -\lambda =$  separation constant

So

$$d^2X/dx^2 + \lambda X = 0$$
 and  $dT^2/dt^2 + \lambda a^2T = 0$ 

**Note:** To solve the 1-D wave equation you need to solve two eigenvalue problems.

Further note that the separation constant could be zero, negative, or positive.

Examine each case separately.

**Solution of eigenvalue problem.** Strategy: Start with the eigenvalue problem for X(x).

 $d^{2}X/dx^{2} + \lambda X = 0$  subject to the boundary conditions X(0) = X(L) = 0

And consider each case for  $\lambda$  separately.

The cases are  $\lambda = 0$ ,  $\lambda < 0$ , and  $\lambda > 0$ .

The result of this calculation yields the eigenvalues  $\lambda_n$  and eigenvectors,  $X_n(x)$ .

**Strategy:** Substitute the eigenvalues,  $\lambda_n$ , into the equation for T(t) to obtain

$$dT^2/dt^2 + \lambda_n a^2 T = 0$$

Solution of this equation normally yields  $T_n(t) = C_n \cos a \sqrt{\lambda_n t} + D_n \sin a \sqrt{\lambda_n t}$ 

Then combine with  $X_n(x)$  with  $T_n(t)$  to obtain the product solution  $T_n(t) X_n(x)$ .

 $u_n(x,t) = [C_n \cos a \sqrt{\lambda_n t} + D_n \sin a \sqrt{\lambda_n t}] X_n(x).$ 

Now sum up each of the terms  $u_n(x,t)$  to obtain the solution for u(x,t).

$$u(x,t) = \sum_{n=1}^{\infty} [C_n \cos a \sqrt{\lambda_n} t + D_n \sin a \sqrt{\lambda_n} t] X_n(x).$$

Note: The solution for the displacement of the string, u(x,t), involves a Fourier series.

**Strategy:** Determine the Fourier coefficients  $C_n$  and  $D_n$  from the

prescribed initial conditions.

u(x,0) = f(x) and  $\partial u(x,0)/\partial t = g(x)$ 

**Note:**  $C_n$  is determined from u(x,0) and  $D_n$  is determined from  $\partial u(x,0)/\partial t$ .

**Example:** Find the displacement, u(x,t), of the vibrating string given by the 1-D wave equation

$$\partial^2 \mathbf{u}/\partial t^2 = 4 \partial^2 \mathbf{u}/\partial x^2 \quad 0 < x < \pi, \quad t > 0$$

Subject to the boundary conditions  $u(0,t) = u(\pi,t) = 0$ 

Along with the initial conditions  $u(x,0) = \sin x$  and  $\partial u(x,0)/\partial t = 1$ 

Strategy: Start by assuming separation of variables

u(x,t) = X(x) T(t)

Substitution of this expression into the above wave equation gives

 $X(x) dT^2/dt^2 = 4 d^2X/dx^2$ 

Then by division  $(d^2X/dx^2)/X = (dT^2/dt^2)/4T = -\lambda =$  separation constant

So

 $d^{2}X/dx^{2} \ + \ \lambda \ X \ = \ 0 \qquad and \qquad dT^{2}/dt^{2} + 4 \ \lambda T \ = \ 0$ 

Start with the eigenvalue problem for X(x).

 $d^2X/dx^2 + \lambda X = 0$  subject to the boundary conditions

 $X(0) = X(\pi) = 0$ 

Case 1  $\lambda = 0$   $d^2X/dx^2 = 0$  or X(x) = Ax + BX(0) = 0 = B and  $X(\pi) = A\pi = 0$  so A = 0 There are no eigenvalues for this case.

**Case 2**  $\lambda < 0$  Let  $\lambda = -\alpha^2$ ,  $\alpha > 0$ 

$$d^2X/dx^2 - \alpha^2 X = 0$$

So  $X(x) = A \cosh \alpha x + B \sinh \alpha x$  and

X(0) = 0 = A,  $X(\pi) = 0 = B \sinh \alpha \pi$  now  $\sinh \alpha \pi \neq 0$  so B = 0

**Result:** No eigenvalues for this case.

**Case 3**  $\lambda > 0$  Let  $\lambda = \alpha^2$ ,  $\alpha > 0$ 

 $d^2X/dx^2 \ + \ \alpha^2 \ X \ = \ 0$ 

So  $X(x) = C \cos \alpha x + D \sin \alpha x$  and

 $X(0) = 0 = C, X(\pi) = 0 = B \sin \alpha \pi$ 

Now for a nontrivial solution  $B \neq 0$  so  $\sin \alpha \pi = 0$ 

which gives  $\alpha_n \pi = n\pi$  or  $\alpha_n = n$ 

**Result:** Eigenvalues for this case  $\lambda_n = n^2$  and eigenfunctions,  $X_n(x)$  are sin nx

Strategy: Apply these eigenvalues to

 $dT^2/dt^2 + \lambda_n a^2T = 0$  or in this case  $dT^2/dt^2 + 4n^2T = 0$ 

Solution of this equation is  $T_n(t) = C_n \cos 2nt + D_n \sin 2nt$ 

**Strategy:** Combine 
$$X_n(x,t)$$
 and  $T_n(t)$  to obtain  $u_n(x,t)$  which gives

$$u_n(x,t) = [C_n \cos 2nt + D_n \sin 2nt] \sin nx$$

Sum up individual terms to obtain

$$u(x,t) = \sum_{n=1}^{\infty} [C_n \cos 2nt + D_n \sin 2nt] \sin nx$$

Determine the values of  $C_n$  and  $D_n$  from the prescribed initial conditions.

$$u(x,0) = \sin x = \sum_{n=1}^{\infty} [C_n] \sin nx$$
 In this case  $n = 1$  which gives  $C_1 = 1$ 

All other C's are zero. Next take the derivative of u(x,t) with respect to time to obtain

$$\partial u(x,t)/\partial t = \sum_{n=1}^{\infty} [-2n C_n \sin 2nt + 2n D_n \cos 2nt] \sin nx$$

and

$$\partial u(x,0)/\partial t = \sum_{n=1}^{\infty} [2n D_n] \sin nx = 1$$

Now for the initial condition  $\partial u(x,0)/\partial t$ 

$$\sum_{n=1}^{\infty} [2n D_n] \sin nx = 1$$

Strategy: Evaluate the Fourier coefficients, D<sub>n</sub>.

$$2n D_n = \frac{2}{\pi} \int_{(1)}^{x=\pi} \frac{\pi}{\int_{(1)}^{x=0} \sin nx \, dx} = -(2/\pi) \cos nx \mid = -(2/\pi) [\cos n\pi - 1]$$
  
or 
$$0$$
$$0$$
$$2n D_n = 4/n\pi \text{ where } n \text{ is odd}$$

Next solve for  $D_n ~~ D_n ~=~ 2 \ / \ n^2 \pi$ 

Finally substitute  $C_n$  and  $D_n$  into

$$u(x,t) = \sum_{n=1}^{\infty} [C_n \cos 2nt + D_n \sin 2nt] \sin nx$$

to obtain

$$u(x,t) = \cos 2t \sin nx + \sum_{n=0}^{\infty} [(2 / n^2 \pi) \sin 2nt] \sin nx$$

which is the displacement of the string at any position, x, at time t. (result)