1-D Wave Equation/String Vibrations

In a Nut Shell: The 1-D wave equation (string vibration, see figure below) is governed by the following partial differential equation:

$$
\begin{equation*}
\partial^{2} u / \partial t^{2}=a^{2} \partial^{2} u / \partial x^{2} \tag{1}
\end{equation*}
$$

where $\quad u=u(x, t)=$ the displacement of the string
$\mathrm{x}=$ the position along the string
$\mathrm{t}=$ the time that the displacement occurs at x
and
a is the speed of wave propagation (material constant)

$$
\begin{gathered}
\text { Vibration of a String } \\
\mathrm{u}=\mathrm{u}(\mathrm{x}, \mathrm{t})=\text { displacement of string }
\end{gathered}
$$

Note: Since the partial differential equation is second order in both its derivatives with respect to x and t you need two boundary conditions and two initial conditions.

The desired outcome is to predict the displacement of the string, $\mathrm{u}(\mathrm{x}, \mathrm{t})$, subject to its boundary and initial conditions (provided in the tables below).

The common boundary conditions at the ends of the string are as follows:
a. Fixed end at $\mathrm{x}=0$

$$
\begin{aligned}
& \mathrm{u}(0, \mathrm{t})=0 \\
& \mathrm{u}(\mathrm{~L}, \mathrm{t})=0 \\
& \partial \mathrm{u}(0, \mathrm{t}) / \partial \mathrm{x}=0 \\
& \partial \mathrm{u}(\mathrm{~L}, \mathrm{t}) / \partial \mathrm{x}=0
\end{aligned}
$$

b. Fixed end $\mathrm{x}=\mathrm{L}$
c. Sliding end condition at $\mathrm{x}=0$
d. Sliding end condition at $\mathrm{x}=\mathrm{L}$
or any combination of these boundary conditions

The common initial conditions at the ends of the string are as follows:
a. Prescribed displacement at $\mathrm{t}=0$
$\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})$
b. Prescribed speed of string at $t=0$

$$
\partial \mathrm{u}(\mathrm{x}, 0) / \partial \mathrm{t}=\mathrm{g}(\mathrm{x})
$$

Strategy: A general approach to solving the 1-D wave equation

$$
\partial^{2} u / \partial t^{2}=a^{2} \partial^{2} u / \partial x^{2}
$$

is to assume separation of variables. i.e. Assume:

$$
u(x, t)=X(x) T(t)
$$

Substitution of $u(x, t)=X(x) T(t)$ into the wave equation gives

$$
X(x) d T^{2} / d t^{2}=a^{2} d^{2} X / d x^{2}
$$

Then by division $\left(\mathrm{d}^{2} \mathrm{X} / \mathrm{dx}^{2}\right) / \mathrm{X}=\left(\mathrm{dT}^{2} / \mathrm{dt}^{2}\right) / \mathrm{a}^{2} \mathrm{~T}=-\lambda=$ separation constant
So $\quad \mathrm{d}^{2} \mathrm{X} / \mathrm{dx}^{2}+\lambda \mathrm{X}=0 \quad$ and $\quad \mathrm{dT}^{2} / \mathrm{dt}^{2}+\lambda \mathrm{a}^{2} \mathrm{~T}=0$

Note: To solve the 1-D wave equation you need to solve two eigenvalue problems.
Further note that the separation constant could be zero, negative, or positive.
Examine each case separately.

Solution of eigenvalue problem. Strategy: Start with the eigenvalue problem for $\mathrm{X}(\mathrm{x})$.

$$
\begin{aligned}
& \mathrm{d}^{2} \mathrm{X} / \mathrm{dx}^{2}+\lambda \mathrm{X}=0 \quad \text { subject to the boundary conditions } \\
& \mathrm{X}(0)=\mathrm{X}(\mathrm{~L})=0
\end{aligned}
$$

And consider each case for λ separately.
The cases are $\lambda=0, \lambda<0$, and $\lambda>0$.
The result of this calculation yields the eigenvalues λ_{n} and eigenvectors, $\mathrm{X}_{\mathrm{n}}(\mathrm{x})$.

Strategy: Substitute the eigenvalues, λ_{n}, into the equation for $\mathrm{T}(\mathrm{t})$ to obtain

$$
\mathrm{dT}^{2} / \mathrm{dt}^{2}+\lambda_{\mathrm{n}} \mathrm{a}^{2} \mathrm{~T}=0
$$

Solution of this equation normally yields $\quad T_{n}(t)=C_{n} \cos a \sqrt{\lambda_{n}} t+D_{n} \sin a \sqrt{\lambda_{n}} t$

Then combine with $X_{n}(x)$ with $T_{n}(t)$ to obtain the product solution $T_{n}(t) X_{n}(x)$.

$$
\mathrm{u}_{\mathrm{n}}(\mathrm{x}, \mathrm{t})=\left[\mathrm{C}_{\mathrm{n}} \cos \mathrm{a} \sqrt{\lambda_{\mathrm{n}} \mathrm{t}}+\mathrm{D}_{\mathrm{n}} \sin \mathrm{a} \sqrt{ } \lambda_{\mathrm{n}} \mathrm{t}\right] \mathrm{X}_{\mathrm{n}}(\mathrm{x}) .
$$

Now sum up each of the terms $u_{n}(x, t)$ to obtain the solution for $u(x, t)$.

$$
u(x, t)=\sum_{n=1}^{\infty}\left[C_{n} \cos a \sqrt{ } \lambda_{n} t+D_{n} \sin a \sqrt{ } \lambda_{n} t\right] X_{n}(x)
$$

Note: The solution for the displacement of the string, $u(x, t)$, involves a Fourier series.

Strategy: Determine the Fourier coefficients C_{n} and D_{n} from the prescribed initial conditions.

$$
\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}) \text { and } \partial \mathrm{u}(\mathrm{x}, 0) / \partial \mathrm{t}=\mathrm{g}(\mathrm{x})
$$

Note: C_{n} is determined from $u(x, 0)$ and D_{n} is determined from $\partial u(x, 0) / \partial t$.

Example: Find the displacement, $u(x, t)$, of the vibrating string given by the 1-D wave equation

$$
\partial^{2} \mathrm{u} / \partial \mathrm{t}^{2}=4 \partial^{2} \mathrm{u} / \partial \mathrm{x}^{2} \quad 0<\mathrm{x}<\pi, \quad \mathrm{t}>0
$$

Subject to the boundary conditions $u(0, t)=u(\pi, t)=0$
Along with the initial conditions $\quad \mathrm{u}(\mathrm{x}, 0)=\sin \mathrm{x} \quad$ and $\quad \partial \mathrm{u}(\mathrm{x}, 0) / \partial \mathrm{t}=1$

Strategy: Start by assuming separation of variables

$$
u(x, t)=X(x) T(t)
$$

Substitution of this expression into the above wave equation gives

$$
\mathrm{X}(\mathrm{x}) \mathrm{dT}^{2} / \mathrm{dt}^{2}=4 \mathrm{~d}^{2} \mathrm{X} / \mathrm{dx}^{2}
$$

Then by division $\quad\left(\mathrm{d}^{2} \mathrm{X} / \mathrm{dx}^{2}\right) / \mathrm{X}=\left(\mathrm{dT}^{2} / \mathrm{dt}^{2}\right) / 4 \mathrm{~T}=-\lambda=$ separation constant
So

$$
\mathrm{d}^{2} \mathrm{X} / \mathrm{dx}^{2}+\lambda \mathrm{X}=0 \quad \text { and } \quad \mathrm{dT}^{2} / \mathrm{dt}^{2}+4 \lambda \mathrm{~T}=0
$$

Start with the eigenvalue problem for $\mathrm{X}(\mathrm{x})$.

$$
\begin{aligned}
& d^{2} \mathrm{X} / \mathrm{dx} \mathrm{x}^{2}+\lambda \mathrm{X}=0 \quad \text { subject to the boundary conditions } \\
& \mathrm{X}(0)=\mathrm{X}(\pi)=0
\end{aligned}
$$

Case $1 \quad \lambda=0 \quad d^{2} \mathrm{X} / \mathrm{dx}^{2}=0 \quad$ or $\quad \mathrm{X}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$
$X(0)=0=B$ and $X(\pi)=A \pi=0$ so $A=0$ There are no eigenvalues for this case.

Case $2 \lambda<\mathbf{0}$ Let $\lambda=-\alpha^{2}, \alpha>0$

$$
\mathrm{d}^{2} \mathrm{X} / \mathrm{dx} \mathrm{x}^{2}-\alpha^{2} \mathrm{X}=0
$$

So $\quad X(x)=A \cosh \alpha x+B \sinh \alpha x \quad$ and

$$
\mathrm{X}(0)=0=\mathrm{A}, \mathrm{X}(\pi)=0=\mathrm{B} \sinh \alpha \pi \text { now } \sinh \alpha \pi \neq 0 \text { so } \mathrm{B}=0
$$

Result: No eigenvalues for this case.

Case $3 \lambda>0$ Let $\lambda=\alpha^{2}, \alpha>0$

$$
d^{2} \mathrm{X} / \mathrm{dx}^{2}+\alpha^{2} \mathrm{X}=0
$$

So $\quad X(x)=C \cos \alpha x+D \sin \alpha x \quad$ and

$$
X(0)=0=C, X(\pi)=0=B \sin \alpha \pi
$$

Now for a nontrivial solution $B \neq 0$ so $\sin \alpha \pi=0$
which gives $\quad \alpha_{n} \pi=n \pi \quad$ or $\quad \alpha_{n}=n$

Result: Eigenvalues for this case $\lambda_{n}=n^{2}$ and eigenfunctions, $X_{n}(x)$ are $\sin n x$

Strategy: Apply these eigenvalues to

$$
\mathrm{dT}^{2} / \mathrm{dt}^{2}+\lambda_{\mathrm{n}} \mathrm{a}^{2} \mathrm{~T}=0 \text { or in this case } \quad \mathrm{dT}^{2} / \mathrm{dt}^{2}+4 \mathrm{n}^{2} \mathrm{~T}=0
$$

Solution of this equation is $T_{n}(t)=C_{n} \cos 2 n t+D_{n} \sin 2 n t$

Strategy: Combine $\mathrm{X}_{\mathrm{n}}(\mathrm{x}, \mathrm{t})$ and $\mathrm{T}_{\mathrm{n}}(\mathrm{t})$ to obtain $\mathrm{u}_{\mathrm{n}}(\mathrm{x}, \mathrm{t})$ which gives

$$
\mathrm{u}_{\mathrm{n}}(\mathrm{x}, \mathrm{t})=\left[\mathrm{C}_{\mathrm{n}} \cos 2 \mathrm{nt}+\mathrm{D}_{\mathrm{n}} \sin 2 \mathrm{nt}\right] \sin \mathrm{nx}
$$

Sum up individual terms to obtain

$$
u(x, t)=\sum_{n=1}^{\infty}\left[C_{n} \cos 2 n t+D_{n} \sin 2 n t\right] \sin n x
$$

Determine the values of C_{n} and D_{n} from the prescribed initial conditions.

$$
\mathrm{u}(\mathrm{x}, 0)=\sin \mathrm{x}=\sum_{\mathrm{n}=1}^{\infty}\left[\mathrm{C}_{\mathrm{n}}\right] \sin \mathrm{nx} \quad \text { In this case } \mathrm{n}=1 \text { which gives } \mathrm{C}_{1}=1
$$

All other C's are zero. Next take the derivative of $u(x, t)$ with respect to time to obtain

$$
\partial u(x, t) / \partial t=\sum_{n=1}^{\infty}\left[-2 n C_{n} \sin 2 n t+2 n D_{n} \cos 2 n t\right] \sin n x
$$

and

$$
\partial u(x, 0) / \partial t=\sum_{n=1}^{\infty}\left[2 n D_{n}\right] \sin n x=1
$$

Now for the initial condition $\partial \mathrm{u}(\mathrm{x}, 0) / \partial \mathrm{t}$

$$
\sum_{n=1}^{\infty}\left[2 n D_{n}\right] \sin n x=1
$$

Strategy: Evaluate the Fourier coefficients, D_{n}.

$$
\begin{aligned}
& \mathrm{x}=\pi \quad \pi \\
& \left.2 n D_{n}=2 / \pi\right) \int(1) \sin n x d x=-(2 / \pi) \cos n x \mid=-(2 / \pi)[\cos n \pi-1) \\
& \mathrm{x}=0 \\
& 0 \\
& \text { or } \\
& 2 n D_{n}=4 / n \pi \text { where } n \text { is odd }
\end{aligned}
$$

Next solve for D_{n}

$$
D_{\mathrm{n}}=2 / \mathrm{n}^{2} \pi
$$

Finally substitute C_{n} and D_{n} into

$$
\mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}=1}^{\infty}\left[\mathrm{C}_{\mathrm{n}} \cos 2 \mathrm{nt}+\mathrm{D}_{\mathrm{n}} \sin 2 \mathrm{nt}\right] \sin \mathrm{nx}
$$

$$
\begin{aligned}
& \text { to obtain } \\
& \qquad \mathrm{u}(\mathrm{x}, \mathrm{t})=\cos 2 \mathrm{t} \sin \mathrm{nx}+\sum_{\mathrm{n}=\mathrm{odd}}^{\infty}\left[\left(2 / \mathrm{n}^{2} \pi\right) \sin 2 \mathrm{nt}\right] \sin \mathrm{nx}
\end{aligned}
$$

which is the displacement of the string at any position, x , at time t . (result)

