## Method of Variation of Parameters

In a Nut Shell: Recall that the method of undetermined coefficients is used to solve for particular solutions of a nonhomogeneous d.e.'s of the form

$$
a d^{2} y / d x^{2}+b d y / d x+c y=f(x)
$$

Variation of parameters, gives an alternative way to solve for particular solutions for general types of functions, $\mathrm{f}(\mathrm{x})$, beyond those covered using the method of undetermined coefficients.

## In general,

## Use the Method Undetermined Coefficients for:

Type 1: Second order, linear, ordinary differential equations with constant coefficients, such as:
$a d^{2} y / d x^{2}+b d y / d x+c y=f(x)$
provided the functions, $\mathrm{f}(\mathrm{x})$, are of the type given in the table below.

| - A polynomial | - Sine functions | - Cosine functions |
| :---: | :---: | :---: |
| Sine and Cosine functions | - Exponential functions | Or products of these functions |

If $f(x)$ is not among this table of options, then the method of variation of parameters may provide an alternative method to arrive at a particular solution.

## Use the Method of Variation of Parameters for:

Type 2A: Second order, linear, ordinary differential equations with constant coefficients where $f(x)$ involves quotients or functions not shown in the above table.

Examples include: $f(x)=\sec x, f(x)=\tan x, f(x)=1 / x, f(x)=x /\left(x^{2}+1\right)$, etc.
Type 2B: Second order, linear, ordinary differential equations with variable coefficients such as:

$$
x^{2} y^{\prime \prime}(x)+2 x y^{\prime}(x)-y(x)=f(x) \quad x>0
$$

Strategy: The method of variation of parameters starts with calculating the complementary solution, $y_{c}$, of the d.e. $d^{2} y / d x^{2}+b d y / d x+c y=0$

$$
\mathrm{y}_{\mathrm{c}}=\mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{C}_{2} \mathrm{y}_{2}(\mathrm{x})
$$

where $y_{1}(x)$ and $y_{2}(x)$ are two linearly independent solutions to the homogeneous d.e. In variation of parameters form the particular solution by using two new functions, $\mathbf{u}_{1}(\mathbf{x})$ and $\mathbf{u}_{2}(\mathbf{x})$, yet to be determined, as follows:

$$
\mathrm{y}_{\mathrm{p}}(\mathrm{x})=\mathrm{u}_{1}(\mathrm{x}) \mathrm{y}_{1}(\mathrm{x})+\mathrm{u}_{2}(\mathrm{x}) \mathrm{y}_{2}(\mathrm{x})
$$

Next calculate the first derivative of $y_{p}(x)$ as follows:
$d y_{p}(x) / d x=d u_{1}(x) / d x y_{1}(x)+d u_{2}(x) / d x y_{2}(x)+u_{1}(x) d y_{1}(x) / d x+u_{2}(x) d y_{2}(x) / d x$
Next comes a key step: To avoid second derivatives of $u_{1}$ and $u_{2}$ set

$$
\begin{equation*}
\mathrm{du}_{1}(\mathrm{x}) / \mathrm{dx} \mathrm{y}_{1}(\mathrm{x})+\mathrm{du}_{2}(\mathrm{x}) / \mathrm{dx} \mathrm{y}_{2}(\mathrm{x})=0 \tag{equation1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { leaving } \quad d y_{p}(x) / d x=u_{1}(x) d y_{1}(x) / d x+u_{2}(x) d y_{2}(x) / d x \quad \text { take another derivative } \\
& d^{2} y_{p}(x) / d x^{2}=\begin{array}{cc}
d u_{1}(x) / d x d y_{1}(x) / d x+d u_{2}(x) d y_{2}(x) / d x \\
+u_{1}(x) d^{2} y_{1}(x) / d x^{2}+u_{2}(x) d d^{2} y_{2}(x) / d x^{2}
\end{array}
\end{aligned}
$$

Strategy: Substitute $y_{p}(x), d y_{p}(x) / d x, d^{2} y_{p}(x) / d x^{2}$ into

$$
d^{2} y / d x^{2}+b d y / d x+c y=f(x)
$$

The result is a second equation to determine $\quad d u_{1 /} d x$ and $d u_{2} / d x$ which has the form:

$$
\mathrm{du}_{1}(\mathrm{x}) / \mathrm{dx} \mathrm{dy}_{1}(\mathrm{x}) / \mathrm{dx}+\mathrm{du}_{2}(\mathrm{x}) / \mathrm{dx} \mathrm{dy}_{2}(\mathrm{x}) / \mathrm{dx}=\mathrm{f}(\mathrm{x})
$$

where we used that both $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$ satisfy the homogeneous d.e.

$$
a d^{2} y / d x^{2}+b d y / d x+c y=0
$$

The next step is to solve equations (1) and (2), using algebra, for $\mathrm{du}_{1}(\mathrm{x}) / \mathrm{dx}$ and $\mathrm{du}_{2}(\mathrm{x}) / \mathrm{dx}$. Note, you have two equations in two unknowns. The unknowns are the $\mathrm{du}_{1}(\mathrm{x}) / \mathrm{dx}$ and $\mathrm{du}_{2}(\mathrm{x}) / \mathrm{dx}$.

They equations are as follows: (repeated for you here)

$$
\begin{array}{ll}
d u_{1}(\mathrm{x}) / \mathrm{dx} \mathrm{y}_{1}(\mathrm{x}) \quad+\mathrm{du}_{2}(\mathrm{x}) / \mathrm{dx} \mathrm{y}_{2}(\mathrm{x})=0 & \text { (equation } 1) \\
d \mathrm{u}_{1}(\mathrm{x}) / \mathrm{dx} \mathrm{dy}_{1}(\mathrm{x}) / \mathrm{dx}+\mathrm{du}_{2}(\mathrm{x}) / d x \mathrm{dy}_{2}(\mathrm{x}) / \mathrm{dx}=\mathrm{f}(\mathrm{x}) & \text { (equation 2) }
\end{array}
$$

Strategy: Integrate expressions for $\mathrm{du}_{1}(\mathrm{x}) / \mathrm{dx}$ and for $\mathrm{du}_{2}(\mathrm{x}) / \mathrm{dx}$ to obtain

$$
\mathrm{u}_{1}(\mathrm{x}) \text { and } \mathrm{u}_{2}(\mathrm{x}) .
$$

It turns out that the constants of integration end up being absorbed in the complementary solution.
This integration may not be simple.
Finally, the particular solution is

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

Example: Use the method of variation of parameters to find a particular solution to:

$$
y^{\prime \prime}+9 y=2 \sec 3 x
$$

Strategy: Start with the complementary solution of the homogeneous d.e.

$$
y^{\prime \prime}+9 y=0 \quad\left(\text { Assume } y(x)=e^{r x}\right)
$$

The characteristic equation is:

$$
\mathrm{r}^{2}+9=0 \quad \text { and } \quad \mathrm{r}= \pm 3 \mathrm{i}
$$

So $\quad \mathrm{y}_{\mathrm{c}}=\mathrm{C}_{1} \sin 3 \mathrm{x}+\mathrm{C}_{2} \cos 3 \mathrm{x} \quad$ is the complementary solution of the d.e.

Pick $y_{1}(x)=\sin 3 x$ and $y_{2}(x)=\cos 3 x$ and recall $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$

$$
\text { So } \quad y_{p}(x)=u_{1}(x) \sin 3 x+u_{2}(x) \cos 3 x
$$

For the particular solution where $\mathrm{u}_{1}(\mathrm{x})$ and $\mathrm{u}_{2}(\mathrm{x})$ are yet to be determined.

Next differentiate $y_{p}(x)$ which gives

$$
y_{p}^{\prime}=u_{1}^{\prime}{ }^{\prime}(x) \sin 3 x+u_{2}^{\prime}(x) \cos 3 x+3 u_{1}(x) \cos 3 x-3 u_{2}(x) \sin 3 x
$$

Key Step: With the method of parameters eliminate the possibility of second derivatives of $u_{1}(x)$ and $u_{2}(x)$ by setting the following:

$$
\begin{equation*}
u_{1}{ }^{\prime}(x) \sin 3 x+u_{2}{ }^{\prime}(x) \cos 3 x=0 \tag{1}
\end{equation*}
$$

So the first derivative of $\mathrm{y}_{\mathrm{p}}$ reduces to $\quad \mathrm{y}_{\mathrm{p}}{ }^{\prime}=3 \mathrm{u}_{1}(\mathrm{x}) \cos 3 \mathrm{x}-3 \mathrm{u}_{2}(\mathrm{x}) \sin 3 \mathrm{x}$
Next calculate the second derivative of $y_{p}$ as follows:

$$
\mathrm{y}_{\mathrm{p}}^{\prime \prime}=3 \mathrm{u}_{1}^{\prime}(\mathrm{x}) \cos 3 \mathrm{x}-3 \mathrm{u}_{2}^{\prime}(\mathrm{x}) \sin 3 \mathrm{x}-9 \mathrm{u}_{1}(\mathrm{x}) \sin 3 \mathrm{x}-9 \mathrm{u}_{2}(\mathrm{x}) \cos 3 \mathrm{x}
$$

and

$$
9 \mathrm{y}_{\mathrm{p}}(\mathrm{x})=9 \mathrm{u}_{1}(\mathrm{x}) \sin 3 \mathrm{x}+9 \mathrm{u}_{2}(\mathrm{x}) \cos 3 \mathrm{x}
$$

Substitute $y_{p}{ }^{\prime \prime}$ and $9 y_{p}$ into the original d.e. to obtain:

$$
\begin{equation*}
2 \sec 3 x=3 u_{1}^{\prime}(x) \cos 3 x-3 u_{2}^{\prime}(x) \sin 3 x \tag{2}
\end{equation*}
$$

Strategy: Use algebra to solve (1) and (2) for $\mathrm{u}_{1}{ }^{\prime}(\mathrm{x})$ and $\mathrm{u}_{2}^{\prime}(\mathrm{x})$.

$$
\begin{align*}
& u_{1}^{\prime}{ }^{\prime}(x) \sin 3 x+u_{2}{ }^{\prime}(x) \cos 3 x=0  \tag{1}\\
& 3 u_{1}{ }^{\prime}(x) \cos 3 x-3 u_{2}^{\prime}(x) \sin 3 x=2 \sec 3 x-\cdots---- \tag{2}
\end{align*}
$$

The result is:

$$
\mathrm{u}_{1}^{\prime}(\mathrm{x})=2 / 3, \quad \mathrm{u}_{2}^{\prime}(\mathrm{x})=-2 / 3 \tan 3 \mathrm{x}
$$

Therefore the particular solution

$$
\begin{gathered}
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \text { is } \\
y_{p}(x)=\left(2 x / 3+B_{1}\right) \sin 3 x+\left[(2 / 9) \ln (\cos 3 x)+B_{2}\right] \cos 3 x
\end{gathered}
$$

The general solution for $\mathrm{y}(\mathrm{x})$ is the sum of the complementary and particular solutions. This is the final result (below).
$\mathrm{y}(\mathrm{x})=\mathrm{C}_{1} \sin 3 \mathrm{x}+\mathrm{C}_{2} \cos 3 \mathrm{x}+(2 \mathrm{x} / 3) \sin 3 \mathrm{x}+(2 / 9) \ln (\cos 3 \mathrm{x}) \cos 3 \mathrm{x}$
(here $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are constants of integration)
where the constants of integration, $B_{1}$ and $B_{2}$, are absorbed into $C_{1}$ and $C_{2}$

