In a Nut Shell: Recall the derivative of a function of one independent variable (say x) relates directly to the slope of the dependent variable (say y). i.e. dy/dx

In a Nut Shell: Likewise for function z of two independent variables (say x and y), the partial derivative on x gives the slope in the x-direction and the partial derivative on y gives the slope in the y direction. i.e. $\partial \mathrm{z} / \partial \mathrm{x}$ and $\partial \mathrm{z} / \partial \mathrm{y}$ This notion of partial derivatives holds for functions of any number of independent variables.

Start by reviewing the definition of the derivative for a function of one independent variable, x

$$
d f / d x=f^{\prime}(x)=\lim _{h \rightarrow 0}[f(x+h)-f(x)] / h
$$

With one independent variable, $f^{\prime}(x)$ represents the slope of the curve $f(x)$ at point P.

Now consider a function, $f(x, y)$, which has two independent variables x and y.
Strategy: Extend the definition of the limit for a function of one independent variable to a function of two independent variables, x and y, leading to the partial derivatives $\partial \mathrm{f} / \partial \mathrm{x}$ and $\partial \mathrm{f} / \partial \mathrm{y}$ of $\mathrm{f}=\mathrm{f}(\mathrm{x}, \mathrm{y})$.

Definitions of Partial Derivatives of $f(x, y)$ using limits.

The first partial derivative of $\mathbf{f}(\mathbf{x}, \mathbf{y})$ with respect to \mathbf{x} (holding y constant) is:

$$
\begin{aligned}
& \partial \mathrm{f} / \partial \mathrm{x}=\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\lim _{\mathrm{h} \rightarrow 0}[\mathrm{f}(\mathrm{x}+\mathrm{h}, \mathrm{y})-\mathrm{f}(\mathrm{x}, \mathrm{y})] / \mathrm{h} \\
& \partial \mathrm{f} / \partial \mathrm{x}=\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\lim _{\mathrm{h} \rightarrow 0}[\mathrm{f}(\mathrm{x}-\mathrm{h}, \mathrm{y})-\mathrm{f}(\mathrm{x}, \mathrm{y})] /(-\mathrm{h})
\end{aligned}
$$

The first partial derivative of $f(x, y)$ with respect to y (holding x constant) is:

$$
\begin{aligned}
& \partial f / \partial y=f_{y}(x, y)=\lim _{h \rightarrow 0}[f(x, y+h)-f(x, y)] / h \\
& \partial f / \partial y=f_{y}(x, y)=\lim _{h \rightarrow 0}[f(x, y-h)-f(x, y)] /(-h)
\end{aligned}
$$

Second Order Partial Derivatives using Limits

The definitions of second order partial derivatives $\mathrm{f}_{\mathrm{xx}}, \mathrm{f}_{\mathrm{yy}}, \mathrm{f}_{\mathrm{xy}}$, and f_{yx} of the function, $f(x, y)$, can be extended using limits as follows:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{xx}}=\partial^{2} \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{x}^{2}=\lim _{\mathrm{h} \rightarrow 0}\left[\mathrm{f}_{\mathrm{x}}(\mathrm{x}+\mathrm{h}, \mathrm{y})-\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})\right] / \mathrm{h} \\
& \mathrm{f}_{\mathrm{xx}}=\partial^{2} \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{x}^{2}=\lim _{\mathrm{h} \rightarrow 0}\left[\mathrm{f}_{\mathrm{x}}(\mathrm{x}-\mathrm{h}, \mathrm{y})-\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})\right] /(-\mathrm{h}) \\
& \mathrm{f}_{\mathrm{yy}}=\partial^{2} \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{y}^{2}=\lim _{\mathrm{h} \rightarrow 0}\left[\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y}+\mathrm{h})-\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})\right] / \mathrm{h} \\
& \mathrm{f}_{\mathrm{yy}}=\partial^{2} \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{y}^{2}=\lim _{\mathrm{h} \rightarrow 0}\left[\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y}-\mathrm{h})-\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})\right] /(-\mathrm{h}) \\
& \mathrm{f}_{\mathrm{xy}}=\partial^{2} \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{x} \partial \mathrm{y} \underset{\mathrm{~h} \rightarrow 0}{=\lim _{\mathrm{h}}\left[\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y}+\mathrm{h})-\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})\right] / \mathrm{h}} \\
& \mathrm{f}_{\mathrm{xy}}=\partial^{2} \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{x} \partial \mathrm{y}=\lim _{\mathrm{h} \rightarrow 0}\left[\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y}-\mathrm{h})-\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})\right] /(-\mathrm{h}) \\
& \mathrm{f}_{\mathrm{yx}}=\partial^{2} \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{y} \partial \mathrm{x}=\lim _{\mathrm{h} \rightarrow 0}\left[\mathrm{f}_{\mathrm{y}}(\mathrm{x}+\mathrm{h}, \mathrm{y})-\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})\right] / \mathrm{h}
\end{aligned}
$$

Example: Use the table of $f(x, y)$ given below

$\rightarrow \mathrm{y}$	1.8	2.0	2.2
$\mathrm{x} \downarrow$			
1.5	12.5	10.2	9.3
2.0	18.1	17.5	15.9

and the definitions of the partial derivatives to calculate $f_{x}(2,2)$, and of $f_{x y}(2,2)$.

Strategy: To calculate the first derivative, apply the definitions of first derivatives using limits

$$
\begin{align*}
& f_{x}=\partial f / \partial x==\lim _{h \rightarrow 0}[f(x+h, y)-f(x, y)] / h \tag{A}\\
& f_{x}=\partial f / \partial x==\lim _{h \rightarrow 0}[f(x-h, y)-f(x, y)] /(-h) \tag{B}
\end{align*}
$$

and use the average.

Calculate $f_{x}(2,2)$: From table: Using (A)
$\mathrm{f}_{\mathrm{x}}(2,2)=\mathrm{f}[(2.5,2)-\mathrm{f}(2,2)] / 0.5=[22.4-17.5] /(0.5)=9.8$
From table: Using (B)
$\mathrm{f}_{\mathrm{x}}(2,2)=\mathrm{f}[(1.5,2)-\mathrm{f}(2,2)] /(-0.5)=[10.2-17.5] /(-0.5)=14.6$
Calculate the average value for $\partial \mathrm{f} / \partial \mathrm{x}$ at $(2,2) . \quad \mathrm{f}_{\mathrm{x}}(2,2)=12.2 \quad$ (result)

Strategy: To calculate the second derivative f_{xy}, apply the definitions of second derivatives using limits.

$$
\begin{align*}
f_{x y}=\partial^{2} f(x, y) / \partial x \partial y= & \lim _{h \rightarrow 0}\left[f_{x}(x, y+h)-f_{x}(x, y)\right] / h \tag{C}\\
f_{x y}=\partial^{2} f(x, y) / \partial x \partial y= & \lim _{h \rightarrow 0}\left[f_{x}(x, y-h)-f_{x}(x, y)\right] /(-h) \tag{D}
\end{align*}
$$

Strategy: Apply the definitions of derivatives using limits to find $f_{x y}$ at $(2,2)$.
Need both $f_{x}(x, y+h)$ and $f_{x}(x, y-h)$ or $f_{x}(2,2.2)$ and $f_{x}(2,1.8)$.
Note: $f_{\mathrm{x}}(2,2)$ previously calculated.
From Table using (A): $f_{x}(2,1.8)=[20.0-18.1] /(0.5)=3.8$
From Table using $(B): f_{x}(2,1.8)=[12.5-18.1] /(-0.5)=11.2$

So average value of $f_{x}(2,1.8)$ is $(3.8+11.2) / 2=7.5$
Next calculate $\mathrm{f}_{\mathrm{x}}(2,2.2)$ using (A) and (B).

$$
f_{x}(2,2.2)=[26.1-15.9] / 0.5=20.4 \text { and }[9.3-15.9] /(-0.5)=13.2
$$

The average value of $\mathrm{f}_{\mathrm{x}}(2,2.2)$ is $(20.4+13.2) / 2=16.8$.
(Result)

Now calculate $\mathrm{f}_{\mathrm{xy}}(2,2)$ using (C) and (D).
By $(C): \quad f_{x y}=\partial^{2} f(x, y) / \partial x \partial y=\left[f_{x}(2,2.2)-f_{x}(2,2)\right] / h=[16.8-12.2] / 0.2=23.0$
By (D): $\quad f_{x y}=\partial^{2} f(x, y) / \partial x \partial y=\left[f_{x}(2,1.8)-f_{x}(2,2)\right] / h=[7.5-12.2] /(-0.2)=23.5$
So the average value of $\mathrm{f}_{\mathrm{xy}}(2,2)$ is $(23.0+23.5) / 2=23.25$

Interpretation as slopes

With a function, $f(x, y)$, of two variables $f_{x}(x, y)$ represents the slope of $f(x, y)$ in the x-direction whereas $f_{y}(x, y)$ represents the slope of $f(x, y)$ in the y-direction.

Notation: $\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\partial \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{x}$ and $\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\partial \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{y}$

Physical Interpretation of the partial derivative $\partial \mathbf{f}(\mathbf{x}, \mathbf{y}) / \partial \mathbf{y}$

Consider a surface S given by $z=f(x, y)$. The intersection of the plane, PL, given by $\mathrm{x}=\mathrm{constant}$ with the surface, S , defines the curve of intersection, C. Let the tangent line to C at point P with coordinates ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) be T .

Then the slope of the line tangent to the curve \mathbf{C} at the point $(\mathbf{a}, \mathrm{b}, \mathrm{c})$ in the \mathbf{y}-direction is:

$$
\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\partial \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{y} \quad \text { evaluated at the point } \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

Similarly one can imagine a plane, $\mathrm{y}=$ constant, intersecting the surface z along a curve D (not shown).

The slope of the line tangent to the curve \mathbf{D} at the point $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ in the \mathbf{x}-direction is:

$$
\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=\partial \mathrm{f}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{x} \quad \text { evaluated at the point } \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

Example: For the given function, $f(x, y)$, find $f_{x}(x, y), f_{y}(x, y), f_{x y}(x, y)$, and $f_{y x}(x, y)$

$$
\begin{aligned}
& f(x, y)=x^{2} \exp \left(-y^{2}\right) \\
& \partial f / \partial \mathrm{x}=\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})=2 \mathrm{x} \exp \left(-\mathrm{y}^{2}\right) \quad \text { (holding } \mathrm{y} \text { constant) } \\
& \partial \mathrm{f} / \partial \mathrm{y}=\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}(-2 \mathrm{y}) \exp \left(-\mathrm{y}^{2}\right) \quad \text { (holding } \mathrm{x} \text { constant) } \\
& \partial / \partial \mathrm{x}[\partial \mathrm{f} / \partial \mathrm{y}]=\mathrm{f}_{\mathrm{xy}}(\mathrm{x}, \mathrm{y})=2 \mathrm{x} \exp \left(-\mathrm{y}^{2}\right)[-2 \mathrm{y}]=-4 \mathrm{x} y \exp \left(-\mathrm{y}^{2}\right) \\
& \partial / \partial \mathrm{y}[\partial \mathrm{f} / \partial \mathrm{x}]=\mathrm{f}_{\mathrm{yx}}(\mathrm{x}, \mathrm{y})=(2 \mathrm{x})\left[-2 \mathrm{y} \exp \left(-\mathrm{y}^{2}\right)\right]=-4 \mathrm{x} y \exp \left(-\mathrm{y}^{2}\right)
\end{aligned}
$$

For continuous functions $f_{x y}(x, y)=f_{y x}(x, y)$ The order of differentiation is irrelevant.

Example: The concept of partial derivatives can be extended to a function of more than two independent variables as shown in this example.

Given: $f(x, y, z)=\cos (4 x+3 y+2 z) \quad$ Find: $\quad \partial^{3} f / \partial x \partial y \partial z=f_{x y z}$
Start with $\quad \partial \mathrm{f} / \partial \mathrm{x}=-4 \sin (4 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z})$
Then take the next derivative with respect to y giving $\partial^{2} f / \partial x \partial y=-12 \cos (4 x+3 y+2 z)$
Finally take the derivative with respect to z gives $\quad \partial^{3} \mathrm{f} / \partial \mathrm{x} \partial \mathrm{y} \partial \mathrm{z}$

$$
\partial^{3} f / \partial x \partial y \partial z=24 \sin (4 x+3 y+2 z) \quad \text { (result) }
$$

Note that the cosine function is continuous. So the order of differentiation should be immaterial.

Let us check this out by calculating $\partial^{3} \mathrm{f} / \partial \mathrm{z} \partial \mathrm{y} \partial \mathrm{x}$
Start with $\quad \partial \mathrm{f} / \partial \mathrm{z}=-2 \sin (4 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z})$
Then $\quad \partial^{2} f / \partial z \partial y=-6 \cos (4 x+3 y+2 z)$
And finally $\partial^{3} f / \partial x \partial y \partial z=24 \sin (4 x+3 y+2 z) \quad$ (same result)

Gradient of a Function

In a Nut Shell: Suppose a level curve is defined by $f(x, y)=0$. Then the gradient of $f(x, y)$ is defined as the vector $\operatorname{grad} f(x, y)=\partial f / \partial x \mathbf{i}+\partial f / \partial x \mathbf{j}$. Grad f points in the direction that gives the greatest change of f.

Suppose a surface is defined as $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$. Then the gradient of $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is defined as the vector $\operatorname{grad} \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\partial \mathrm{f} / \partial \mathrm{x} \mathbf{i}+\partial \mathrm{f} / \partial \mathrm{x} \mathbf{j}+\partial \mathrm{f} / \partial \mathrm{z} \mathbf{k}$. Grad F points in the direction that gives the greatest change of F .

The figures shown below illustrate these vectors.

Note that grad f is normal to the level curve, in this case at the point (a,b). (Figure on the left) One application might be to find the tangent line to the level curve at a specified point.

Likewise, note that grad F is normal to the surface at point ($\mathrm{a}, \mathrm{b}, \mathrm{c}$). (Figure on the right) One application might be to find the tangent plane to the surface at a specified point.

Example: Find the tangent plane to the surface $\mathrm{z}=\sin (2 \mathrm{x}+2 \mathrm{y})$ at the point $(\pi / 2, \pi / 2,0)$.

$$
\begin{aligned}
& F(x, y, z)=\sin (2 x+2 y)-z=0 \\
& \operatorname{Grad} F=2 \cos (2 x+2 y) i+2 \cos (2 x+2 y) \mathbf{j}-\mathbf{k}
\end{aligned}
$$

So the normal to the plane at the point is $\mathbf{n}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
The general equation for a plane is $\left(\mathbf{r}-\mathbf{r}_{\mathrm{o}}\right) \cdot \mathbf{n}=0$
Here $\mathbf{r}=\langle\mathrm{x}, \mathrm{y}, \mathrm{z}\rangle$ and $\mathbf{r}_{\mathrm{r}}=\langle\pi / 2, \pi / 2,0\rangle$
So $\quad[(\mathrm{x}-\pi / 2) \mathbf{i}+(\mathrm{y}-\pi / 2) \mathbf{j}+\mathrm{z} \mathbf{k}] \cdot[2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}]=0$

$$
2 x+2 y-z-2 \pi=0 \quad(\text { result })
$$

Example: Find the maximum rate of change of the function, $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ at the specified point.
Also find its direction. $f(x, y, z)=\tan (x+y+2 z)$ at the point $(-1,-1,1)$

$$
\operatorname{grad} f=\left\langle\sec ^{2}(x+y+2 z), \sec ^{2}(x+y+2 z), 2 \sec ^{2}(x+y+2 z)\right\rangle
$$

At the specified point $\operatorname{grad} \mathrm{f}=\left\langle\sec ^{2}(0), \sec ^{2}(0), 2 \sec ^{2}(0)\right\rangle=\langle 1,1,2\rangle$
So the maximum rate of change of the function $=\sqrt{ } 6$. (result)
And its direction at the point ($-1,-1,1$) is $\langle 1,1,2\rangle$. (result)

