Motion of a Particle in Space

In a Nut Shell: A particle can be located by its position vector, \mathbf{r}, in space. Description of its motion involves both its velocity vector, \mathbf{v}, and its acceleration vector, a

Strategy: Let $\mathbf{r}=\mathrm{x} \mathbf{i}+\mathrm{y} \mathbf{j}+\mathrm{z} \mathbf{k}$ be a position vector from the origin, O , to an arbitrary point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ (particle) on a curve, C , in space. Then $\mathrm{dr} / \mathrm{dt}$ is a vector tangent to this curve. This curve, C , represents the path of motion of the particle, P , in space.

Take the derivative of the position vector, \mathbf{r}, to obtain the velocity of the particle, \mathbf{v}.
$\mathbf{v}=\mathrm{dr} / \mathrm{dt}=$ velocity of the particle along its path
So $\quad \mathbf{v}=\mathrm{d} \mathbf{r} / \mathrm{dt}=\mathrm{dx} / \mathrm{dt} \mathbf{i}+\mathrm{dy} / \mathrm{dt} \mathbf{j}+\mathrm{dz} / \mathrm{dt} \mathbf{k}$
where $\mathrm{dx} / \mathrm{dt}, \mathrm{dy} / \mathrm{dt}$, and $\mathrm{dz} / \mathrm{dt}$ represent the x, y, and z -components of velocity of the particle moving along C .

Strategy: Take the derivative of the velocity of the particle to obtain its acceleration.
So $\mathbf{a}=\mathrm{dv} / \mathrm{dt}$. In "rectangular coordinates" $\mathrm{x}, \mathrm{y}, \mathrm{z}$
$\mathbf{a}=\mathrm{d} \mathbf{v} / \mathrm{dt}=\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2} \mathbf{i}+\mathrm{d}^{2} \mathrm{y} / \mathrm{dt}^{2} \mathbf{j}+\mathrm{d}^{2} \mathrm{z} / \mathrm{dt}^{2} \mathbf{k}$

In a Nut Shell: It is often convenient to describe motion of a particle in terms of its normal and tangential components. Let \mathbf{T} be the unit tangential vector to the path, C , of motion of a particle and let \mathbf{N} be its unit normal vector.

Then since \mathbf{v}, the velocity of the particle is always tangent to its path

$$
\mathbf{v}=\mathrm{v} \mathbf{T} \quad \text { so } \mathbf{a}=\mathrm{d} \mathbf{v} / \mathrm{dt}=\mathrm{dv} / \mathrm{dt} \mathbf{T}+\mathrm{vd} \mathbf{T} / \mathrm{dt}
$$

here $\mathrm{dv} / \mathrm{dt}$ represents the tangential component of acceleration of the particle
Now $\quad \mathrm{d} \mathbf{T} / \mathrm{dt}=[\mathrm{d} \mathbf{T} / \mathrm{ds}][\mathrm{ds} / \mathrm{dt}]$ using the chain rule of differentiation. So
$\mathrm{vd} \mathbf{T} / \mathrm{dt}=\mathrm{vd} \mathbf{T} / \mathrm{ds} \mathrm{v}=\mathrm{v}^{2} \mathrm{~d} \mathbf{T} / \mathrm{ds}$ since $\mathrm{ds} / \mathrm{dt}=\mathrm{v}$
Note: Since $\mathbf{T} \cdot \mathbf{T}=1 \quad(\mathbf{T}$ is a unit tangent vector to the path)

$$
\mathbf{T} \cdot \mathrm{d} \mathbf{T} / \mathrm{ds}=0 \text { which shows that } \mathrm{d} \mathbf{T} / \mathrm{ds} \text { is perpendicular to } \mathbf{T} .
$$

Define the curvature of C as $|\mathrm{d} \mathbf{T} / \mathrm{ds}|=\kappa$ and let \mathbf{N} be the unit normal vector to C
$\mathrm{d} \mathbf{T} / \mathrm{ds}=\kappa \mathbf{N}$ so the acceleration of the particle becomes (where $\kappa=$ curvature)
$\mathbf{a}=\mathrm{d} \mathbf{v} / \mathrm{dt}=\mathrm{dv} / \mathrm{dt} \mathbf{T}+\kappa \mathrm{v}^{2} \mathbf{N}, \kappa=1 / \rho, \rho=$ radius of curvature
Note: The acceleration in general has components tangential and normal to its path.
Note further: To find: $\mathbf{T}=\mathbf{v} /|\mathbf{v}|$

$$
\mathbf{a} \cdot \mathbf{a}=\mathrm{a}^{2}=\mathrm{a}_{\mathrm{T}}^{2}+\mathrm{a}_{\mathrm{N}}^{2}
$$

To find: $\mathbf{N} \quad \mathbf{N}=[\mathrm{d} \mathbf{T} / \mathrm{ds}] / \kappa=[\mathrm{d} \mathbf{T} / \mathrm{ds}] /|\mathrm{d} \mathbf{T} / \mathrm{ds}|=[\mathrm{d} \mathbf{T} / \mathrm{dt}] /|\mathrm{d} \mathbf{T} / \mathrm{dt}|$

Example: Given the position vector, $\mathbf{r}=\mathrm{t} \mathbf{i}+\sin \mathrm{t} \mathbf{j}+\cos \mathrm{t} \mathbf{k}$ where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors (base vectors) along the x, y, and z axes and t is any arbitrary time find: the velocity of the particle, \mathbf{v}, the unit tangential vector, \mathbf{T}, the unit normal vector, \mathbf{N}, the curvature of the particle's path, κ, and the acceleration, \mathbf{a}, of the particle.

Strategy: The derivative of the position vector, \mathbf{r}, gives the velocity of the particle.
So $\mathbf{v}=\mathrm{d} / \mathrm{dt}=\mathbf{i}+\cos \mathrm{t} \mathbf{j}-\sin \mathrm{t} \mathbf{k} \quad$ (result)
Since the velocity is always tangent to its path, the unit tangential vector can be found by dividing the velocity vector by its magnitude.

$$
\mathbf{T}=\mathbf{v} /|\mathbf{v}|=[\mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}] / \sqrt{ }\left(1^{2}+\cos ^{2} t+\sin ^{2} t\right)
$$

Therefore $|\mathbf{v}|=\mathrm{v}=\sqrt{ } 2$
So $\quad \mathbf{T}=[\mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}] / \sqrt{ } 2 \quad$ (result)
Recall that the rate of change of the unit tangential vector along its path, $d \mathbf{T} / \mathrm{ds}$
is given by the product of the curvature of the path, κ, with its unit normal vector, \mathbf{N}.
So

$$
\mathrm{d} \mathbf{T} / \mathrm{ds}=\kappa \mathbf{N}
$$

and

$$
|\mathrm{d} \mathbf{T} / \mathrm{ds}|=\kappa \quad \text { since }|\mathbf{N}|=1
$$

Next find the unit normal vector, \mathbf{N}; recall $\mathbf{N}=[\mathrm{d} \mathbf{T} / \mathrm{ds}] / \kappa$
But $\quad \kappa=|\mathrm{d} \mathbf{T} / \mathrm{ds}|$
Therefore $\mathbf{N}=\mathrm{d} \mathbf{T} / \mathrm{ds} /|\mathrm{d} \mathbf{T} / \mathrm{ds}|=[\mathrm{d} \mathbf{T} / \mathrm{dt}] /|\mathrm{d} \mathbf{T} / \mathrm{dt}|$
and

$$
\mathrm{d} \mathbf{T} / \mathrm{dt}=[-\sin \mathrm{t} \mathbf{j}-\cos \mathrm{t} \mathbf{k}] / \sqrt{ } 2 \quad \text { and } \quad|\mathrm{d} \mathbf{T} / \mathrm{dt}|=1 / \sqrt{ } 2
$$

So $[\mathrm{d} \mathbf{T} / \mathrm{dt}] /|\mathrm{d} \mathbf{T} / \mathrm{dt}|=[-\sin \mathrm{t} \mathbf{j}-\cos \mathrm{t} \mathbf{k}]=\mathbf{N} \quad$ (result)

Check: The unit tangential and normal vectors are perpendicular. Therefore the dot product should be zero.

$$
\begin{aligned}
& \text { Is } \mathbf{T} \cdot \mathbf{N}=0 ? \\
& \{[\mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}] / \sqrt{ } 2\} \cdot\{[-\sin t \mathbf{j}-\cos t \mathbf{k}]\} \\
& =-\cos t \sin t+\sin t \mathrm{cos} t=0 \quad \text { (check) }
\end{aligned}
$$

Next find the curvature, κ.

$$
\kappa=|\mathrm{d} \mathbf{T} / \mathrm{ds}|=|\mathrm{d} \mathbf{T} / \mathrm{dt}| \mathrm{dt} / \mathrm{ds} \text { using the chain rule }
$$

Now $\mathrm{dt} / \mathrm{ds}=1 / \mathrm{v}$
$\kappa=|\mathrm{d} \mathbf{T} / \mathrm{ds}|=|\mathrm{d} \mathbf{T} / \mathrm{dt}|(1 / \mathrm{v})=(1 / \sqrt{ } 2)(1 / \sqrt{ } 2)=1 / 2 \quad$ (result

Finally, the acceleration of the particle is the rate of change of the velocity of the particle, dv/dt. Recall $\mathbf{v}=\mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}$. So

```
a=-\operatorname{sin}t\mathbf{j}-\operatorname{cost}\mathbf{k}\quad\mathrm{ (result in Cartesian components)}
```

Next calculate the normal and tangential components of acceleration.
Strategy: Use the dot product to find the tangential component of acceleration.

$$
\mathbf{a} \cdot \mathbf{T}=\mathrm{a}_{\mathrm{T}}
$$

where $\mathbf{a}=-\sin t \mathbf{j}-\cos t \mathbf{k}$ and $\mathbf{T}=[\mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}] / \sqrt{ } 2$
So $\quad \mathrm{a}_{\mathrm{T}}=(-\sin \mathrm{t})(\cos \mathrm{t})+(-\cos \mathrm{t})(-\sin \mathrm{t})=0 \quad$ (result)

Finally calculate the normal component of acceleration of the particle.
Recall $\mathbf{a}=\mathrm{a}_{\mathrm{N}} \mathbf{N}+\mathrm{a}_{\mathrm{T}} \mathbf{T}$
So $\left.|\mathbf{a}|=\sqrt{ }\left(\mathrm{a}_{\mathrm{N}}\right)^{2}+\left(\mathrm{a}_{\mathrm{T}}\right)^{2}\right)=\mathbf{a} \cdot \mathbf{a}$

$$
\mathrm{a}_{\mathrm{N}}=\sqrt{ }\left(\mathbf{a} \cdot \mathbf{a}-\left(\mathrm{a}_{\mathrm{T}}\right)^{2}\right)
$$

In this example $\mathrm{a}_{\mathrm{T}}=0$ so $\mathrm{a}_{\mathrm{N}}=(-\sin \mathrm{t} \mathbf{j}-\cos \mathrm{t} \mathbf{k}) \cdot(-\sin \mathrm{t} \mathbf{j}-\cos \mathrm{t} \mathbf{k})$
Therefore $\quad \mathrm{a}_{\mathrm{N}}=\sin ^{2} \mathrm{t}+\cos ^{2} \mathrm{t}=1 \quad$ (result)

Summary

$$
\begin{aligned}
& \mathbf{r}=\mathrm{t} \mathbf{i}+\sin t \mathbf{j}+\cos t \mathbf{k} \\
& \mathbf{v}=\quad \mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}=\sqrt{ } 2 \quad \mathbf{T} \\
& \quad \text { where } \mathbf{T}=(\mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}) / \sqrt{ } 2 \\
& \mathbf{a}=-\sin t \mathbf{j}-\cos \mathrm{t} \mathbf{k} \\
& \mathbf{a}=\text { (1) } \mathbf{N} \quad \text { where } \mathbf{N}=[-\sin t \mathbf{j}-\cos t \mathbf{k}]
\end{aligned}
$$

